File size: 10,299 Bytes
569cdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 如何使用LangChain插件\n",
"\n",
"为了便利大家结合文心大模型与[LangChain](https://www.langchain.com/)开发应用,ERNIE Bot Agent扩展LangChain框架的功能,提供大语言模型(large language model)、聊天模型(chat model)、文本嵌入模型(text embedding model)等组件(这些组件的集合称为LangChain插件)。本文档将介绍ERNIE Bot Agent的LangChain插件的基础用法。\n",
"\n",
"ERNIE Bot Agent的LangChain插件目前包含如下组件:\n",
"\n",
"- `ErnieBot`:大语言模型,用于完成文本补全任务。\n",
"- `ErnieBotChat`:聊天模型,用于完成对话补全任务。\n",
"- `ErnieEmbeddings`:文本嵌入模型,用于生成文本的向量表示。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 准备工作\n",
"\n",
"安装`erniebot-agent`与`langchain`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install erniebot-agent langchain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"根据[ERNIE Bot SDK认证鉴权文档](https://github.com/PaddlePaddle/ERNIE-Bot-SDK/blob/develop/docs/authentication.md)中的说明,获取AI Studio星河社区的access token。执行如下代码,填写access token并敲击回车键:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"access_token = getpass.getpass(prompt=\"Access token: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## `ErnieBot`\n",
"\n",
"`ErnieBot`是LangChain大语言模型组件,可用于完成文本补全任务。本文档仅介绍`ErnieBot`的用法,大家可以在[LangChain官方文档](https://python.langchain.com/docs/modules/model_io/llms/)了解关于大语言模型组件的更多信息。\n",
"\n",
"创建一个`ErnieBot`对象:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from erniebot_agent.extensions.langchain.llms import ErnieBot"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = ErnieBot(aistudio_access_token=access_token)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 基本使用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What does SFINAE mean in C++ template metaprogramming?\"\n",
"\n",
"print(llm(question))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 在chain中使用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"Tell me a joke about {content}.\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"content\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"content = \"rabbits\"\n",
"\n",
"print(llm_chain.run(content=content))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 异步调用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"Please write a Python program that checks if an integer is a prime number.\"\n",
"\n",
"answer = await llm.agenerate([question])\n",
"print(answer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 流式回复"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What is the difference between capybara and kiwi?\"\n",
"\n",
"for chunk in llm.stream(question):\n",
" print(chunk, end=\"\", flush=True)\n",
"print(\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## `ErnieBotChat`\n",
"\n",
"`ErnieBotChat`是LangChain聊天模型组件,可用于完成文本补全任务。本文档仅介绍`ErnieBotChat`的用法,大家可以在[LangChain官方文档](https://python.langchain.com/docs/modules/model_io/chat/)了解关于聊天模型模型组件的更多信息。\n",
"\n",
"创建一个`ErnieBotChat`对象:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from erniebot_agent.extensions.langchain.chat_models import ErnieBotChat"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat = ErnieBotChat(aistudio_access_token=access_token)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 基本使用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models.base import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"message = HumanMessage(content=\"What does SFINAE mean in C++ template metaprogramming?\")\n",
"print(chat([message]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 在chain中使用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"message = \"Tell me a joke about {content}.\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"human\", message)])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | chat"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(chain.invoke({\"content\": \"rabbits\"}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 异步调用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models.base import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"message = HumanMessage(content=\"Please write a Python program that checks if an integer is a prime number.\")\n",
"\n",
"response = await chat.agenerate([[message]])\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 流式回复"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models.base import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"message = HumanMessage(content=\"What is the difference between capybara and kiwi?\")\n",
"\n",
"for chunk in chat.stream([message]):\n",
" print(chunk.content, end=\"\", flush=True)\n",
"print(\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## `ErnieEmbeddings`\n",
"\n",
"`ErnieEmbeddings`是LangChain文本嵌入模型组件,可用于生成文本的向量表示。本文档仅介绍`ErnieEmbeddings`的用法,大家可以在[LangChain官方文档](https://python.langchain.com/docs/modules/data_connection/text_embedding/)了解关于聊天模型模型组件的更多信息。\n",
"\n",
"创建一个`ErnieEmbeddings`对象:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from erniebot_agent.extensions.langchain.embeddings import ErnieEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = ErnieEmbeddings(aistudio_access_token=access_token)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 处理单段输入文本"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\"\n",
"\n",
"query_result = embeddings.embed_query(text)\n",
"print(len(query_result))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 处理多段输入文本"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"texts = [\"doc1\", \"doc2\"]\n",
"\n",
"docs_result = embeddings.embed_documents(texts)\n",
"print(len(docs_result))\n",
"for res in docs_result:\n",
" print(len(res))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.12 ('py310')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "9345dcc06c282d741efc85f9a9d5e3db79cc12ed5ca52c1d1ae239e559abfbe9"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|