Spaces:
Running
Running
File size: 6,772 Bytes
dd84d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import marimo
__generated_with = "0.11.30"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _introduction(mo):
mo.md(
"""
# DuckDB: An Embeddable Analytical Database System
### What is DuckDB?
[DuckDB](https://duckdb.org/) is a high-performance, in-process analytical database management system (DBMS) designed for speed and simplicity. It's particularly well-suited for analytical query workloads, offering a robust SQL interface and efficient data processing capabilities. This document highlights key features and aspects of DuckDB relevant for a course on database systems or data analysis.
### [Key Features](https://duckdb.org/why_duckdb):
- In-Process: Easy integration, zero external dependencies.
- Portable: Works on various OS and architectures.
- Columnar Storage: Efficient for analytical queries.
- Vectorized Execution: Speeds up data processing.
- ACID Transactions: Ensures data integrity.
- Multi-Language APIs: Python, R, Java, etc.
### [Use Cases](https://github.com/davidgasquez/awesome-duckdb?tab=readme-ov-file):
- Data analysis and exploration
- Embedded analytics in applications
- ETL (Extract, Transform, Load) processes
- Data science and machine learning workflows
- Rapid prototyping of data analysis pipelines.
### [Installation](https://duckdb.org/docs/installation/?version=stable&environment=python):
- The DuckDB Python API can be installed using pip:
```
pip install duckdb
```
- It is also possible to install DuckDB using conda:
```
conda install python-duckdb -c conda-forge.
```
**Python version:** DuckDB requires Python 3.7 or newer.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# [1. DuckDB Basic Connection](https://duckdb.org/docs/stable/connect/overview.html)
DuckDB can run entirely in your computer's RAM, known as in-memory mode, which you can enable by using `:memory:` as the database name or by not providing a database file. It's crucial to understand that this means all data is temporary and will be completely erased when the program closes, as it isn't saved to disk.
"""
)
return
@app.cell
def _database_connection(duckdb):
# Create a connection to an in-memory database
database_connection = duckdb.connect(database=":memory:")
print(
f"DuckDB version: {database_connection.execute('SELECT version()').fetchone()[0]}"
)
return (database_connection,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [2. Creating Tables](https://duckdb.org/docs/stable/sql/statements/create_table.html)"""
)
return
@app.cell
def _create_users_table(database_connection):
database_connection.execute(
"""
CREATE TABLE users (
id INTEGER,
name VARCHAR,
age INTEGER,
registration_date DATE
)
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [3. Instering data into table](https://duckdb.org/docs/stable/sql/statements/insert)"""
)
return
@app.cell
def _insert_user_data(database_connection):
database_connection.execute(
"""
INSERT INTO users VALUES
(1, 'Alice', 25, '2021-01-01'),
(2, 'Bob', 30, '2021-02-01'),
(3, 'Charlie', 35, '2021-03-01')
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [4. Basic Queries](https://duckdb.org/docs/stable/sql/query_syntax/select)"""
)
return
@app.cell
def _basic_queries(database_connection):
# Select all data
user_results = database_connection.execute("SELECT * FROM users").fetchall()
for user_row in user_results:
print(user_row)
return user_results, user_row
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [5. Working with Polars](https://duckdb.org/docs/stable/guides/python/polars.html)"""
)
return
@app.cell
def _polars_dataframe(database_connection, pl):
# Create a Polars DataFrame
polars_dataframe = pl.DataFrame(
{
"id": [1, 2, 3],
"name": ["Alice", "Bob", "Charlie"],
"age": [25, 30, 35],
"registration_date": ["2021-01-01", "2021-02-01", "2021-03-01"],
}
)
# Register the Polars DataFrame as a DuckDB table
database_connection.register("users_polars", polars_dataframe)
# Query the Polars DataFrame using DuckDB
polars_results = database_connection.execute(
"SELECT * FROM users_polars"
).fetchall()
print("New Table:")
for polars_row in polars_results:
print(polars_row)
return polars_dataframe, polars_results, polars_row
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [6. Join Operations](https://duckdb.org/docs/stable/guides/performance/join_operations.html)"""
)
return
@app.cell
def _join_operations(database_connection):
join_results = database_connection.execute(
"""
SELECT u.id, u.name, u.age, nu.registration_date
FROM users u
JOIN users_polars nu ON u.age < nu.age
"""
)
print("Join Result:")
for join_row in join_results.fetchall():
print(join_row)
return join_results, join_row
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [7. Aggregate Functions](https://duckdb.org/docs/stable/sql/functions/aggregates.html)"""
)
return
@app.cell
def _aggregate_functions(database_connection):
aggregate_results = database_connection.execute(
"""
SELECT AVG(age) as avg_age, MAX(age) as max_age, MIN(age) as min_age
FROM (SELECT * FROM users UNION ALL SELECT * FROM users_polars) AS all_users
"""
).fetchall()
print(
f"Average Age: {aggregate_results[0][0]:.1f}, "
f"Max Age: {aggregate_results[0][1]}, "
f"Min Age: {aggregate_results[0][2]}"
)
return (aggregate_results,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""# [8. Converting Results to Polars DataFrames](https://duckdb.org/docs/stable/guides/python/polars.html)"""
)
return
@app.cell
def _convert_to_polars(database_connection):
# -- 8. Converting Results to Polars DataFrames --
# Convert the result to a Polars DataFrame
polars_result_df = database_connection.execute("SELECT * FROM users").df()
print("Result as Polars DataFrame:")
print(polars_result_df)
return (polars_result_df,)
@app.cell(hide_code=True)
def _():
import marimo as mo
import duckdb
import polars as pl
return duckdb, mo, pl
if __name__ == "__main__":
app.run()
|