File size: 18,488 Bytes
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
 
 
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
 
 
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
 
 
 
0895906
d6c7221
0895906
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
 
2ecf6fd
d6c7221
2ecf6fd
0895906
d6c7221
 
0895906
d6c7221
 
 
 
 
2ecf6fd
d6c7221
 
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
0895906
d6c7221
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import io
import os
import random
import time
from glob import glob

import IPython
import librosa
import matplotlib.pyplot as plt
import numpy as np
import soundfile as sf
import tensorflow as tf
import tensorflow_io as tfio

from tensorflow.keras import mixed_precision
from tensorflow.keras.optimizers import Adam
from tensorflow.python.framework import random_seed
from tqdm import tqdm
import gradio as gr
from scipy.io.wavfile import write as write_wav


class Utils_functions:
    def __init__(self, args):

        self.args = args

        melmat = tf.signal.linear_to_mel_weight_matrix(
            num_mel_bins=args.mel_bins,
            num_spectrogram_bins=(4 * args.hop) // 2 + 1,
            sample_rate=args.sr,
            lower_edge_hertz=0.0,
            upper_edge_hertz=args.sr // 2,
        )
        mel_f = tf.convert_to_tensor(librosa.mel_frequencies(n_mels=args.mel_bins + 2, fmin=0.0, fmax=args.sr // 2))
        enorm = tf.cast(
            tf.expand_dims(tf.constant(2.0 / (mel_f[2 : args.mel_bins + 2] - mel_f[: args.mel_bins])), 0,), tf.float32,
        )
        melmat = tf.multiply(melmat, enorm)
        melmat = tf.divide(melmat, tf.reduce_sum(melmat, axis=0))
        self.melmat = tf.where(tf.math.is_nan(melmat), tf.zeros_like(melmat), melmat)

        with np.errstate(divide="ignore", invalid="ignore"):
            self.melmatinv = tf.constant(np.nan_to_num(np.divide(melmat.numpy().T, np.sum(melmat.numpy(), axis=1))).T)

    def conc_tog_specphase(self, S, P):
        S = tf.cast(S, tf.float32)
        P = tf.cast(P, tf.float32)
        S = self.denormalize(S, clip=False)
        S = tf.math.sqrt(self.db2power(S) + 1e-7)
        P = P * np.pi
        Sls = tf.split(S, S.shape[0], 0)
        S = tf.squeeze(tf.concat(Sls, 1), 0)
        Pls = tf.split(P, P.shape[0], 0)
        P = tf.squeeze(tf.concat(Pls, 1), 0)
        SP = tf.cast(S, tf.complex64) * tf.math.exp(1j * tf.cast(P, tf.complex64))
        wv = tf.signal.inverse_stft(
            SP,
            4 * self.args.hop,
            self.args.hop,
            fft_length=4 * self.args.hop,
            window_fn=tf.signal.inverse_stft_window_fn(self.args.hop),
        )
        return np.squeeze(wv)

    def _tf_log10(self, x):
        numerator = tf.math.log(x)
        denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
        return numerator / denominator

    def normalize(self, S, clip=False):
        S = (S - self.args.mu_rescale) / self.args.sigma_rescale
        if clip:
            S = tf.clip_by_value(S, -1.0, 1.0)
        return S

    def normalize_rel(self, S):
        S = S - tf.math.reduce_min(S + 1e-7)
        S = (S / (tf.math.reduce_max(S + 1e-7) + 1e-7)) + 1e-7
        return S

    def denormalize(self, S, clip=False):
        if clip:
            S = tf.clip_by_value(S, -1.0, 1.0)
        return (S * self.args.sigma_rescale) + self.args.mu_rescale

    def amp2db(self, x):
        return 20 * self._tf_log10(tf.clip_by_value(tf.abs(x), 1e-5, 1e100))

    def db2amp(self, x):
        return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)

    def power2db(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
        log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
        log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
        if top_db is not None:
            log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
        return log_spec

    def power2db_batch(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
        log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
        log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
        if top_db is not None:
            log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec, [-2, -1], keepdims=True) - top_db)
        return log_spec

    def db2power(self, S_db, ref=1.0):
        return ref * tf.math.pow(10.0, 0.1 * S_db)

    def wv2mel(self, wv, topdb=80.0):
        X = tf.signal.stft(
            wv,
            frame_length=4 * self.args.hop,
            frame_step=self.args.hop,
            fft_length=4 * self.args.hop,
            window_fn=tf.signal.hann_window,
            pad_end=False,
        )
        S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb) - self.args.ref_level_db)
        SM = tf.tensordot(S, self.melmat, 1)
        return SM

    def mel2spec(self, SM):
        return tf.tensordot(SM, tf.transpose(self.melmatinv), 1)

    def spec2mel(self, S):
        return tf.tensordot(S, self.melmat, 1)

    def wv2spec(self, wv, hop_size=256, fac=4):
        X = tf.signal.stft(
            wv,
            frame_length=fac * hop_size,
            frame_step=hop_size,
            fft_length=fac * hop_size,
            window_fn=tf.signal.hann_window,
            pad_end=False,
        )
        return self.normalize(self.power2db(tf.abs(X) ** 2, top_db=None))

    def wv2spec_hop(self, wv, topdb=80.0, hopsize=256):
        X = tf.signal.stft(
            wv,
            frame_length=4 * hopsize,
            frame_step=hopsize,
            fft_length=4 * hopsize,
            window_fn=tf.signal.hann_window,
            pad_end=False,
        )
        S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb))
        return tf.tensordot(S, self.melmat, 1)

    def distribute(self, x, model, bs=64, dual_out=False):
        outls = []
        if isinstance(x, list):
            bdim = x[0].shape[0]
            for i in range(((bdim - 2) // bs) + 1):
                outls.append(model([el[i * bs : i * bs + bs] for el in x], training=False))
        else:
            bdim = x.shape[0]
            for i in range(((bdim - 2) // bs) + 1):
                outls.append(model(x[i * bs : i * bs + bs], training=False))

        if dual_out:
            return (
                np.concatenate([outls[k][0] for k in range(len(outls))], 0),
                np.concatenate([outls[k][1] for k in range(len(outls))], 0),
            )
        else:
            return np.concatenate(outls, 0)

    def distribute_enc(self, x, model, bs=64):
        outls = []
        if isinstance(x, list):
            bdim = x[0].shape[0]
            for i in range(((bdim - 2) // bs) + 1):
                res = model([el[i * bs : i * bs + bs] for el in x], training=False)
                resls = tf.split(res, self.args.shape // self.args.window, 0)
                res = tf.concat(resls, -2)
                outls.append(res)
        else:
            bdim = x.shape[0]
            for i in range(((bdim - 2) // bs) + 1):
                res = model(x[i * bs : i * bs + bs], training=False)
                resls = tf.split(res, self.args.shape // self.args.window, 0)
                res = tf.concat(resls, -2)
                outls.append(res)

        return np.concatenate(outls, 0)

    def distribute_dec(self, x, model, bs=64):
        outls = []
        bdim = x.shape[0]
        for i in range(((bdim - 2) // bs) + 1):
            inp = x[i * bs : i * bs + bs]
            inpls = tf.split(inp, 2, -2)
            inp = tf.concat(inpls, 0)
            res = model(inp, training=False)
            outls.append(res)
        return (
            np.concatenate([outls[k][0] for k in range(len(outls))], 0),
            np.concatenate([outls[k][1] for k in range(len(outls))], 0),
        )

    def distribute_dec2(self, x, model, bs=64):
        outls = []
        bdim = x.shape[0]
        for i in range(((bdim - 2) // bs) + 1):
            inp1 = x[i * bs : i * bs + bs]
            inpls = tf.split(inp1, 2, -2)
            inp1 = tf.concat(inpls, 0)
            outls.append(model(inp1, training=False))

        return np.concatenate(outls, 0)

    def get_noise_interp(self):
        noiseg = tf.random.normal([1, 64], dtype=tf.float32)

        noisel = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
        noisec = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
        noiser = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)

        rl = tf.linspace(noisel, noisec, self.args.latlen + 1, axis=-2)[:, :-1, :]
        rr = tf.linspace(noisec, noiser, self.args.latlen + 1, axis=-2)

        noisetot = tf.concat([rl, rr], -2)
        return tf.image.random_crop(noisetot, [1, self.args.latlen, 64 + 64])

    def generate_example_stereo(self, models_ls):
        (critic, gen, enc, dec, enc2, dec2, critic_rec, gen_ema, [opt_dec, opt_disc],) = models_ls
        abb = gen_ema(self.get_noise_interp(), training=False)
        abbls = tf.split(abb, abb.shape[-2] // 16, -2)
        abb = tf.concat(abbls, 0)

        chls = []
        for channel in range(2):

            ab = self.distribute_dec2(
                abb[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth,], dec2,
            )
            abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
            ab = tf.concat(abls, 0)
            ab_m, ab_p = self.distribute_dec(ab, dec)
            wv = self.conc_tog_specphase(ab_m, ab_p)
            chls.append(wv)

        return np.stack(chls, -1)

    # Save in training loop
    def save_test_image_full(self, path, models_ls=None):

        abwv = self.generate_example_stereo(models_ls)
        abwv2 = self.generate_example_stereo(models_ls)
        abwv3 = self.generate_example_stereo(models_ls)
        abwv4 = self.generate_example_stereo(models_ls)

        # IPython.display.display(
        #     IPython.display.Audio(np.squeeze(np.transpose(abwv)), rate=self.args.sr)
        # )
        # IPython.display.display(
        #     IPython.display.Audio(np.squeeze(np.transpose(abwv2)), rate=self.args.sr)
        # )
        # IPython.display.display(
        #     IPython.display.Audio(np.squeeze(np.transpose(abwv3)), rate=self.args.sr)
        # )
        # IPython.display.display(
        #     IPython.display.Audio(np.squeeze(np.transpose(abwv4)), rate=self.args.sr)
        # )

        write_wav(f"{path}/out1.wav", self.args.sr, np.squeeze(abwv))
        write_wav(f"{path}/out2.wav", self.args.sr, np.squeeze(abwv2))
        write_wav(f"{path}/out3.wav", self.args.sr, np.squeeze(abwv3))
        write_wav(f"{path}/out4.wav", self.args.sr, np.squeeze(abwv4))

        fig, axs = plt.subplots(nrows=4, ncols=1, figsize=(20, 20))
        axs[0].imshow(
            np.flip(np.array(tf.transpose(self.wv2spec_hop((abwv[:, 0] + abwv[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,),
            cmap=None,
        )
        axs[0].axis("off")
        axs[0].set_title("Generated1")
        axs[1].imshow(
            np.flip(
                np.array(tf.transpose(self.wv2spec_hop((abwv2[:, 0] + abwv2[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,
            ),
            cmap=None,
        )
        axs[1].axis("off")
        axs[1].set_title("Generated2")
        axs[2].imshow(
            np.flip(
                np.array(tf.transpose(self.wv2spec_hop((abwv3[:, 0] + abwv3[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,
            ),
            cmap=None,
        )
        axs[2].axis("off")
        axs[2].set_title("Generated3")
        axs[3].imshow(
            np.flip(
                np.array(tf.transpose(self.wv2spec_hop((abwv4[:, 0] + abwv4[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,
            ),
            cmap=None,
        )
        axs[3].axis("off")
        axs[3].set_title("Generated4")
        # plt.show()
        plt.savefig(f"{path}/output.png")

    # Save in training loop
    def save_end(
        self, epoch, gloss, closs, mloss, models_ls=None, n_save=3, save_path="checkpoints",
    ):
        (critic, gen, enc, dec, enc2, dec2, critic_rec, gen_ema, [opt_dec, opt_disc],) = models_ls
        if epoch % n_save == 0:
            print("Saving...")
            path = f"{save_path}/MUSIKA!_-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}"
            os.mkdir(path)
            critic.save_weights(path + "/critic.h5")
            critic_rec.save_weights(path + "/critic_rec.h5")
            gen.save_weights(path + "/gen.h5")
            gen_ema.save_weights(path + "/gen_ema.h5")
            # enc.save_weights(path + "/enc.h5")
            # dec.save_weights(path + "/dec.h5")
            # enc2.save_weights(path + "/enc2.h5")
            # dec2.save_weights(path + "/dec2.h5")
            np.save(path + "/opt_dec.npy", opt_dec.get_weights())
            np.save(path + "/opt_disc.npy", opt_disc.get_weights())
            self.save_test_image_full(path, models_ls=models_ls)

    def truncated_normal(self, shape, bound=2.0, dtype=tf.float32):
        seed1, seed2 = random_seed.get_seed(tf.random.uniform((), tf.int32.min, tf.int32.max, dtype=tf.int32))
        return tf.random.stateless_parameterized_truncated_normal(shape, [seed1, seed2], 0.0, 1.0, -bound, bound)

    def distribute_gen(self, x, model, bs=64):
        outls = []
        bdim = x.shape[0]
        if bdim == 1:
            bdim = 2
        for i in range(((bdim - 2) // bs) + 1):
            outls.append(model(x[i * bs : i * bs + bs], training=False))
        return np.concatenate(outls, 0)

    def get_noise_interp_multi(self, fac=1, var=2.0):
        noiseg = self.truncated_normal([1, 64], var, dtype=tf.float32)

        if var < 1.75:
            var = 1.75

        noisels = [
            tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1) for i in range(2 + (fac - 1))
        ]
        rls = [
            tf.linspace(noisels[k], noisels[k + 1], self.args.latlen + 1, axis=-2)[:, :-1, :]
            for k in range(len(noisels) - 1)
        ]
        return tf.concat(rls, 0)

    def stfunc(self, genre, z, var, models_ls_techno, models_ls_classical):

        (
            critic,
            gen,
            enc,
            dec_techno,
            enc2,
            dec2_techno,
            critic_rec,
            gen_ema_techno,
            [opt_dec, opt_disc],
        ) = models_ls_techno
        (
            critic,
            gen,
            enc,
            dec_classical,
            enc2,
            dec2_classical,
            critic_rec,
            gen_ema_classical,
            [opt_dec, opt_disc],
        ) = models_ls_classical

        var = 0.01 + (3.5 * (var / 100.0))

        if z == 0:
            fac = 1
        elif z == 1:
            fac = 5
        else:
            fac = 10

        if genre == 0:
            dec = dec_techno
            dec2 = dec2_techno
            gen_ema = gen_ema_techno
        else:
            dec = dec_classical
            dec2 = dec2_classical
            gen_ema = gen_ema_classical

        bef = time.time()
        ab = self.distribute_gen(self.get_noise_interp_multi(fac, var), gen_ema)
        abls = tf.split(ab, ab.shape[0], 0)
        ab = tf.concat(abls, -2)
        abls = tf.split(ab, ab.shape[-2] // 16, -2)
        abi = tf.concat(abls, 0)

        chls = []
        for channel in range(2):

            ab = self.distribute_dec2(
                abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
                dec2,
                bs=128,
            )
            # abls = tf.split(ab, ab.shape[-2] // (self.args.shape // 2), -2)
            abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
            ab = tf.concat(abls, 0)

            ab_m, ab_p = self.distribute_dec(ab, dec, bs=128)
            abwv = self.conc_tog_specphase(ab_m, ab_p)
            chls.append(abwv)

        print(
            f"Time for complete generation pipeline: {time.time()-bef} s        {int(np.round((fac*23.)/(time.time()-bef)))}x faster than Real Time!"
        )

        abwvc = np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
        spec = np.flip(
            np.array(
                tf.transpose(
                    self.wv2spec_hop((abwvc[: 23 * self.args.sr, 0] + abwvc[: 23 * self.args.sr, 1]) / 2.0, 80.0, 256),
                    [1, 0],
                )
            ),
            -2,
        )

        return (
            spec,
            (self.args.sr, np.int16(abwvc * 32767.0)),
        )

    def render_gradio(self, models_ls_techno, models_ls_classical, train=True):
        article_text = "Original work by Marco Pasini ([Twitter](https://twitter.com/marco_ppasini)) and Jan Schlüter at Johannes Kepler Universität Linz."

        def gradio_func(x, y, z):
            return self.stfunc(x, y, z, models_ls_techno, models_ls_classical)

        iface = gr.Interface(
            fn=gradio_func,
            inputs=[
                gr.inputs.Radio(
                    choices=["Techno/Experimental", "Classical"],
                    type="index",
                    default="Classical",
                    label="Music Genre to Generate",
                ),
                gr.inputs.Radio(
                    choices=["23s", "1m 58s", "3m 57s"], type="index", default="1m 58s", label="Generated Music Length",
                ),
                gr.inputs.Slider(
                    minimum=0,
                    maximum=100,
                    step=1,
                    default=25,
                    label="Stability[left]/Variety[right] Tradeoff (Truncation Trick)",
                ),
            ],
            outputs=[
                gr.outputs.Image(label="Log-MelSpectrogram of Generated Audio (first 23 sec)"),
                gr.outputs.Audio(type="numpy", label="Generated Audio"),
            ],
            allow_screenshot=False,
            title="musika!",
            description="Blazingly Fast Stereo Waveform Music Generation of Arbitrary Length. Be patient and enjoy the weirdness!",
            article=article_text,
            layout="vertical",
            theme="huggingface",
        )

        print("--------------------------------")
        print("--------------------------------")
        print("--------------------------------")
        print("--------------------------------")
        print("--------------------------------")
        print("CLICK ON LINK BELOW TO OPEN GRADIO INTERFACE")
        if train:
            iface.launch(prevent_thread_lock=True)
        else:
            iface.launch(enable_queue=True)
        # iface.launch(share=True, enable_queue=True)
        print("--------------------------------")
        print("--------------------------------")
        print("--------------------------------")
        print("--------------------------------")
        print("--------------------------------")