File size: 4,592 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torchmetrics
import torchmetrics.classification


class PixelAccuracy(torchmetrics.Metric):
    def __init__(self):
        super().__init__()
        self.add_state("correct_pixels", default=torch.tensor(
            0), dist_reduce_fx="sum")
        self.add_state("total_pixels", default=torch.tensor(0),
                       dist_reduce_fx="sum")

    def update(self, pred, data):
        output_mask = pred['output'] > 0.5
        gt_mask = data["seg_masks"].permute(0, 3, 1, 2)
        self.correct_pixels += (
            (output_mask == gt_mask).sum()
        )
        self.total_pixels += torch.numel(pred["valid_bev"][..., :-1])

    def compute(self):
        return self.correct_pixels / self.total_pixels


class IOU(torchmetrics.Metric):
    def __init__(self, num_classes=3, **kwargs):
        super().__init__(**kwargs)
        self.num_classes = num_classes
        self.add_state("intersection_observable", default=torch.zeros(
            num_classes), dist_reduce_fx="sum")
        self.add_state("union_observable", default=torch.zeros(
            num_classes), dist_reduce_fx="sum")
        self.add_state("intersection_non_observable",
                       default=torch.zeros(num_classes), dist_reduce_fx="sum")
        self.add_state("union_non_observable", default=torch.zeros(
            num_classes), dist_reduce_fx="sum")

    def update(self, output, data):

        gt = data["seg_masks"]
        pred = output['output']

        if "confidence_map" in data:
            observable_mask = torch.logical_and(
                output["valid_bev"][..., :-1], data["confidence_map"] == 0)
            non_observable_mask = torch.logical_and(
                output["valid_bev"][..., :-1], data["confidence_map"] == 1)
        else:
            observable_mask = output["valid_bev"][..., :-1]
            non_observable_mask = torch.logical_not(observable_mask)

        for class_idx in range(self.num_classes):
            pred_mask = pred[:, class_idx] > 0.5
            gt_mask = gt[..., class_idx]

            # For observable areas
            intersection_observable = torch.logical_and(
                torch.logical_and(pred_mask, gt_mask), observable_mask
            ).sum()
            union_observable = torch.logical_and(
                torch.logical_or(pred_mask, gt_mask), observable_mask
            ).sum()
            self.intersection_observable[class_idx] += intersection_observable
            self.union_observable[class_idx] += union_observable

            # For non-observable areas
            intersection_non_observable = torch.logical_and(
                torch.logical_and(pred_mask, gt_mask), non_observable_mask
            ).sum()
            union_non_observable = torch.logical_and(
                torch.logical_or(pred_mask, gt_mask), non_observable_mask
            ).sum()

            self.intersection_non_observable[class_idx] += intersection_non_observable
            self.union_non_observable[class_idx] += union_non_observable

    def compute(self):
        raise NotImplemented


class ObservableIOU(IOU):
    def __init__(self, class_idx=0, **kwargs):
        super().__init__(**kwargs)
        self.class_idx = class_idx

    def compute(self):
        return (self.intersection_observable / (self.union_observable + 1e-6))[self.class_idx]


class UnobservableIOU(IOU):
    def __init__(self, class_idx=0, **kwargs):
        super().__init__(**kwargs)
        self.class_idx = class_idx

    def compute(self):
        return (self.intersection_non_observable / (self.union_non_observable + 1e-6))[self.class_idx]


class MeanObservableIOU(IOU):
    def compute(self):
        return self.intersection_observable.sum() / (self.union_observable.sum() + 1e-6)


class MeanUnobservableIOU(IOU):
    def compute(self):
        return self.intersection_non_observable.sum() / (self.union_non_observable.sum() + 1e-6)


class mAP(torchmetrics.classification.MultilabelPrecision):
    def __init__(self, num_labels, **kwargs):
        super().__init__(num_labels=num_labels, **kwargs)

    def update(self, output, data):

        if "confidence_map" in data:
            observable_mask = torch.logical_and(
                output["valid_bev"][..., :-1], data["confidence_map"] == 0)
        else:
            observable_mask = output["valid_bev"][..., :-1]

        pred = output['output']
        pred = pred.permute(0, 2, 3, 1)
        pred = pred[observable_mask]

        target = data['seg_masks']
        target = target[observable_mask]

        super(mAP, self).update(pred, target)