Spaces:
Sleeping
Sleeping
File size: 9,787 Bytes
572abf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
"""
API functions for sampling from anticipatory infilling models.
"""
import math
import torch
import torch.nn.functional as F
from tqdm import tqdm
from anticipation import ops
from anticipation.config import *
from anticipation.vocab import *
def safe_logits(logits, idx):
logits[CONTROL_OFFSET:SPECIAL_OFFSET] = -float('inf') # don't generate controls
logits[SPECIAL_OFFSET:] = -float('inf') # don't generate special tokens
# don't generate stuff in the wrong time slot
if idx % 3 == 0:
logits[DUR_OFFSET:DUR_OFFSET+MAX_DUR] = -float('inf')
logits[NOTE_OFFSET:NOTE_OFFSET+MAX_NOTE] = -float('inf')
elif idx % 3 == 1:
logits[TIME_OFFSET:TIME_OFFSET+MAX_TIME] = -float('inf')
logits[NOTE_OFFSET:NOTE_OFFSET+MAX_NOTE] = -float('inf')
elif idx % 3 == 2:
logits[TIME_OFFSET:TIME_OFFSET+MAX_TIME] = -float('inf')
logits[DUR_OFFSET:DUR_OFFSET+MAX_DUR] = -float('inf')
return logits
def nucleus(logits, top_p):
# from HF implementation
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(0, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = -float("inf")
return logits
def future_logits(logits, curtime):
""" don't sample events in the past """
if curtime > 0:
logits[TIME_OFFSET:TIME_OFFSET+curtime] = -float('inf')
return logits
def instr_logits(logits, full_history):
""" don't sample more than 16 instruments """
instrs = ops.get_instruments(full_history)
if len(instrs) < 15: # 16 - 1 to account for the reserved drum track
return logits
for instr in range(MAX_INSTR):
if instr not in instrs:
logits[NOTE_OFFSET+instr*MAX_PITCH:NOTE_OFFSET+(instr+1)*MAX_PITCH] = -float('inf')
return logits
def add_token(model, z, tokens, top_p, current_time, debug=False):
assert len(tokens) % 3 == 0
history = tokens.copy()
lookback = max(len(tokens) - 1017, 0)
history = history[lookback:] # Markov window
offset = ops.min_time(history, seconds=False)
history[::3] = [tok - offset for tok in history[::3]] # relativize time in the history buffer
new_token = []
with torch.no_grad():
for i in range(3):
input_tokens = torch.tensor(z + history + new_token).unsqueeze(0).to(model.device)
logits = model(input_tokens).logits[0,-1]
idx = input_tokens.shape[1]-1
logits = safe_logits(logits, idx)
if i == 0:
logits = future_logits(logits, current_time - offset)
elif i == 2:
logits = instr_logits(logits, tokens)
logits = nucleus(logits, top_p)
probs = F.softmax(logits, dim=-1)
token = torch.multinomial(probs, 1)
new_token.append(int(token))
new_token[0] += offset # revert to full sequence timing
if debug:
print(f' OFFSET = {offset}, LEN = {len(history)}, TIME = {tokens[::3][-5:]}')
return new_token
def generate(model, start_time, end_time, inputs=None, controls=None, top_p=1.0, debug=False, delta=DELTA*TIME_RESOLUTION):
if inputs is None:
inputs = []
if controls is None:
controls = []
start_time = int(TIME_RESOLUTION*start_time)
end_time = int(TIME_RESOLUTION*end_time)
# prompt is events up to start_time
prompt = ops.pad(ops.clip(inputs, 0, start_time, clip_duration=False, seconds=False), start_time)
# treat events beyond start_time as controls
future = ops.clip(inputs, start_time+1, ops.max_time(inputs, seconds=False), clip_duration=False, seconds=False)
if debug:
print('Future')
ops.print_tokens(future)
# clip controls that preceed the sequence
controls = ops.clip(controls, DELTA, ops.max_time(controls, seconds=False), clip_duration=False, seconds=False)
if debug:
print('Controls')
ops.print_tokens(controls)
z = [ANTICIPATE] if len(controls) > 0 or len(future) > 0 else [AUTOREGRESS]
if debug:
print('AR Mode' if z[0] == AUTOREGRESS else 'AAR Mode')
# interleave the controls with the events
tokens, controls = ops.anticipate(prompt, ops.sort(controls + [CONTROL_OFFSET+token for token in future]))
if debug:
print('Prompt')
ops.print_tokens(tokens)
current_time = ops.max_time(prompt, seconds=False)
if debug:
print('Current time:', current_time)
with tqdm(range(end_time-start_time)) as progress:
if controls:
atime, adur, anote = controls[0:3]
anticipated_tokens = controls[3:]
anticipated_time = atime - ATIME_OFFSET
else:
# nothing to anticipate
anticipated_time = math.inf
while True:
while current_time >= anticipated_time - delta:
tokens.extend([atime, adur, anote])
if debug:
note = anote - ANOTE_OFFSET
instr = note//2**7
print('A', atime - ATIME_OFFSET, adur - ADUR_OFFSET, instr, note - (2**7)*instr)
if len(anticipated_tokens) > 0:
atime, adur, anote = anticipated_tokens[0:3]
anticipated_tokens = anticipated_tokens[3:]
anticipated_time = atime - ATIME_OFFSET
else:
# nothing more to anticipate
anticipated_time = math.inf
new_token = add_token(model, z, tokens, top_p, max(start_time,current_time))
new_time = new_token[0] - TIME_OFFSET
if new_time >= end_time:
break
if debug:
new_note = new_token[2] - NOTE_OFFSET
new_instr = new_note//2**7
new_pitch = new_note - (2**7)*new_instr
print('C', new_time, new_token[1] - DUR_OFFSET, new_instr, new_pitch)
tokens.extend(new_token)
dt = new_time - current_time
assert dt >= 0
current_time = new_time
progress.update(dt)
events, _ = ops.split(tokens)
return ops.sort(ops.unpad(events) + future)
def generate_ar(model, start_time, end_time, inputs=None, controls=None, top_p=1.0, debug=False, delta=DELTA*TIME_RESOLUTION):
if inputs is None:
inputs = []
if controls is None:
controls = []
else:
# treat controls as ordinary tokens
controls = [token-CONTROL_OFFSET for token in controls]
start_time = int(TIME_RESOLUTION*start_time)
end_time = int(TIME_RESOLUTION*end_time)
inputs = ops.sort(inputs + controls)
# prompt is events up to start_time
prompt = ops.pad(ops.clip(inputs, 0, start_time, clip_duration=False, seconds=False), start_time)
if debug:
print('Prompt')
ops.print_tokens(prompt)
# treat events beyond start_time as controls
controls = ops.clip(inputs, start_time+1, ops.max_time(inputs, seconds=False), clip_duration=False, seconds=False)
if debug:
print('Future')
ops.print_tokens(controls)
z = [AUTOREGRESS]
if debug:
print('AR Mode')
current_time = ops.max_time(prompt, seconds=False)
if debug:
print('Current time:', current_time)
tokens = prompt
with tqdm(range(end_time-start_time)) as progress:
if controls:
atime, adur, anote = controls[0:3]
anticipated_tokens = controls[3:]
anticipated_time = atime - TIME_OFFSET
else:
# nothing to anticipate
anticipated_time = math.inf
while True:
new_token = add_token(model, z, tokens, top_p, max(start_time,current_time))
new_time = new_token[0] - TIME_OFFSET
if new_time >= end_time:
break
dt = new_time - current_time
assert dt >= 0
current_time = new_time
# backfill anything that should have come before the new token
while current_time >= anticipated_time:
tokens.extend([atime, adur, anote])
if debug:
note = anote - NOTE_OFFSET
instr = note//2**7
print('A', atime - TIME_OFFSET, adur - DUR_OFFSET, instr, note - (2**7)*instr)
if len(anticipated_tokens) > 0:
atime, adur, anote = anticipated_tokens[0:3]
anticipated_tokens = anticipated_tokens[3:]
anticipated_time = atime - TIME_OFFSET
else:
# nothing more to anticipate
anticipated_time = math.inf
if debug:
new_note = new_token[2] - NOTE_OFFSET
new_instr = new_note//2**7
new_pitch = new_note - (2**7)*new_instr
print('C', new_time, new_token[1] - DUR_OFFSET, new_instr, new_pitch)
tokens.extend(new_token)
progress.update(dt)
if anticipated_time != math.inf:
tokens.extend([atime, adur, anote])
return ops.sort(ops.unpad(tokens) + controls)
|