Spaces:
Running
Running
File size: 11,003 Bytes
808d645 be268ce 808d645 be268ce 808d645 64836fd b075b60 3d3032a a475d51 b075b60 1f03e9b b075b60 a5a792c b075b60 a5a792c b075b60 a5a792c b075b60 808d645 be268ce 808d645 9ab9633 808d645 40f8c3b 808d645 40f8c3b 808d645 6940247 40f8c3b 808d645 40f8c3b 808d645 40f8c3b 808d645 be268ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import gradio as gr
from text_generation import Client
# HF-hosted endpoint for testing purposes (requires an HF API token)
API_TOKEN = os.environ.get("API_TOKEN", None)
CURRENT_CLIENT = Client("https://afrts4trc759c6eq.us-east-1.aws.endpoints.huggingface.cloud/generate_stream",
timeout=120,
headers={
"Accept": "application/json",
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"}
)
DEFAULT_HEADER = os.environ.get("HEADER", "")
DEFAULT_USER_NAME = os.environ.get("USER_NAME", "user")
DEFAULT_ASSISTANT_NAME = os.environ.get("ASSISTANT_NAME", "assistant")
DEFAULT_SEPARATOR = os.environ.get("SEPARATOR", "<|im_end|>")
PROMPT_TEMPLATE = "<|im_start|>{user_name}\n{query}{separator}\n<|im_start|>{assistant_name}\n{response}"
repo = None
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def has_no_history(chatbot, history):
return not chatbot and not history
def generate(
user_message,
chatbot,
history,
temperature,
top_p,
max_new_tokens,
repetition_penalty,
header,
user_name,
assistant_name,
separator
):
# Don't return meaningless message when the input is empty
if not user_message:
print("Empty input")
history.append(user_message)
past_messages = []
for data in chatbot:
user_data, model_data = data
past_messages.extend(
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
)
print(past_messages)
if len(past_messages) < 1:
prompt = header + PROMPT_TEMPLATE.format(user_name=user_name,
query=user_message,
assistant_name=assistant_name,
response="",
separator=separator)
else:
prompt = header
for i in range(0, len(past_messages), 2):
intermediate_prompt = PROMPT_TEMPLATE.format(user_name=user_name,
query=past_messages[i]["content"],
assistant_name=assistant_name,
response=past_messages[i + 1]["content"],
separator=separator)
# print(prompt, separator, intermediate_prompt)
prompt = prompt + intermediate_prompt + separator + "\n"
# print(prompt)
prompt = prompt + PROMPT_TEMPLATE.format(user_name=user_name,
query=user_message,
assistant_name=assistant_name,
response="",
separator=separator)
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=40,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=1024,
# seed=42,
# stop_sequences=[user_name, DEFAULT_SEPARATOR]
stop_sequences=[DEFAULT_SEPARATOR]
)
# print(prompt)
stream = CURRENT_CLIENT.generate_stream(
prompt,
**generate_kwargs,
)
output = ""
for idx, response in enumerate(stream):
# print(response.token)
if response.token.text == '':
pass
# print(response.token.text)
# break
if response.token.special:
continue
output += response.token.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
# chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
yield chat, history, user_message, ""
return chat, history, user_message, ""
def clear_chat():
return [], []
title = """<h1 align="center">CroissantLLMChat Playground π₯</h1>"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### Usage recommendations
We recommend testing the chat model for open-ended writing tasks, tips, translations, etc...
We find direct instructions to work best, and performance to drop after the first round of interactions.
We limit the length of each message to 256 tokens by default (can be changed in the settings below), and of the entire conversation so clear the Chat between tests !
### Errors
The model is very small in size (1.3B), about 130 times smaller than GPT3. As such, it's generalist Chat version logically exhibits reduced understanding, reasoning and knowledge capacities, and may still exhibit undesired behavior such as hallucinations, or toxicity (rarely)...
For industrial applications, we recommend finetuning the model, but trained this Chat version to allow for experimenting and to showcase the capabilities for it's size.
### More info
ποΈ The blogpost: https://huggingface.co/blog/manu/croissant-llm-blog
π The 45 page report with lots of gems: https://arxiv.org/abs/2402.00786
π€ Models, Data, Demo: https://huggingface.co/croissantllm
"""
)
with gr.Row():
with gr.Group():
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
with gr.Row():
with gr.Column(scale=3):
user_message = gr.Textbox(placeholder="Enter your message here. Example: 'What can I visit in Paris today ?'", show_label=False, elem_id="q-input")
with gr.Row():
send_button = gr.Button("Send", elem_id="send-btn", visible=True)
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
temperature = gr.Slider(
label="Temperature",
value=0.3,
minimum=0.1,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.9,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=512,
step=8,
interactive=True,
info="The maximum numbers of new tokens",
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.05,
minimum=0.0,
maximum=2,
step=0.05,
interactive=True,
info="The parameter for repetition penalty. 1.0 means no penalty.",
)
with gr.Accordion(label="Prompt", open=False, elem_id="prompt-accordion"):
header = gr.Textbox(
label="Header instructions",
value=DEFAULT_HEADER,
interactive=True,
info="Instructions given to the assistant at the beginning of the prompt",
)
user_name = gr.Textbox(
label="User name",
value=DEFAULT_USER_NAME,
interactive=True,
info="Name to be given to the user in the prompt",
)
assistant_name = gr.Textbox(
label="Assistant name",
value=DEFAULT_ASSISTANT_NAME,
interactive=True,
info="Name to be given to the assistant in the prompt",
)
separator = gr.Textbox(
label="Separator",
value=DEFAULT_SEPARATOR,
interactive=True,
info="Character to be used when the speaker changes in the prompt",
)
history = gr.State([])
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
user_message,
chatbot,
history,
temperature,
top_p,
max_new_tokens,
repetition_penalty,
header,
user_name,
assistant_name,
separator
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
user_message,
chatbot,
history,
temperature,
top_p,
max_new_tokens,
repetition_penalty,
header,
user_name,
assistant_name,
separator
],
outputs=[chatbot, history, last_user_message, user_message],
)
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
demo.queue().launch()
|