File size: 18,679 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import torch
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from processors.acoustic_extractor import cal_normalized_mel
from processors.acoustic_extractor import load_normalized
from models.base.base_dataset import (
BaseOfflineCollator,
BaseOfflineDataset,
BaseTestDataset,
BaseTestCollator,
)
from text import text_to_sequence
from text.cmudict import valid_symbols
from tqdm import tqdm
import pickle
class NS2Dataset(torch.utils.data.Dataset):
def __init__(self, cfg, dataset, is_valid=False):
assert isinstance(dataset, str)
processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset)
meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file
# train.json
self.metafile_path = os.path.join(processed_data_dir, meta_file)
self.metadata = self.get_metadata()
self.cfg = cfg
assert cfg.preprocess.use_mel == False
if cfg.preprocess.use_mel:
self.utt2melspec_path = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2melspec_path[utt] = os.path.join(
cfg.preprocess.processed_dir,
dataset,
cfg.preprocess.melspec_dir, # mel
utt_info["speaker"],
uid + ".npy",
)
assert cfg.preprocess.use_code == True
if cfg.preprocess.use_code:
self.utt2code_path = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2code_path[utt] = os.path.join(
cfg.preprocess.processed_dir,
dataset,
cfg.preprocess.code_dir, # code
utt_info["speaker"],
uid + ".npy",
)
assert cfg.preprocess.use_spkid == True
if cfg.preprocess.use_spkid:
self.utt2spkid = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2spkid[utt] = utt_info["speaker"]
assert cfg.preprocess.use_pitch == True
if cfg.preprocess.use_pitch:
self.utt2pitch_path = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2pitch_path[utt] = os.path.join(
cfg.preprocess.processed_dir,
dataset,
cfg.preprocess.pitch_dir, # pitch
utt_info["speaker"],
uid + ".npy",
)
assert cfg.preprocess.use_duration == True
if cfg.preprocess.use_duration:
self.utt2duration_path = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2duration_path[utt] = os.path.join(
cfg.preprocess.processed_dir,
dataset,
cfg.preprocess.duration_dir, # duration
utt_info["speaker"],
uid + ".npy",
)
assert cfg.preprocess.use_phone == True
if cfg.preprocess.use_phone:
self.utt2phone = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2phone[utt] = utt_info["phones"]
assert cfg.preprocess.use_len == True
if cfg.preprocess.use_len:
self.utt2len = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2len[utt] = utt_info["num_frames"]
# for cross reference
if cfg.preprocess.use_cross_reference:
self.spkid2utt = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
spkid = utt_info["speaker"]
if spkid not in self.spkid2utt:
self.spkid2utt[spkid] = []
self.spkid2utt[spkid].append(utt)
# get phone to id / id to phone map
self.phone2id, self.id2phone = self.get_phone_map()
self.all_num_frames = []
for i in range(len(self.metadata)):
self.all_num_frames.append(self.metadata[i]["num_frames"])
self.num_frame_sorted = np.array(sorted(self.all_num_frames))
self.num_frame_indices = np.array(
sorted(
range(len(self.all_num_frames)), key=lambda k: self.all_num_frames[k]
)
)
def __len__(self):
return len(self.metadata)
def get_dataset_name(self):
return self.metadata[0]["Dataset"]
def get_metadata(self):
with open(self.metafile_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
print("metadata len: ", len(metadata))
return metadata
def get_phone_map(self):
symbols = valid_symbols + ["sp", "spn", "sil"] + ["<s>", "</s>"]
phone2id = {s: i for i, s in enumerate(symbols)}
id2phone = {i: s for s, i in phone2id.items()}
return phone2id, id2phone
def __getitem__(self, index):
utt_info = self.metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
single_feature = dict()
if self.cfg.preprocess.read_metadata:
metadata_uid_path = os.path.join(
self.cfg.preprocess.processed_dir,
self.cfg.preprocess.metadata_dir,
dataset,
# utt_info["speaker"],
uid + ".pkl",
)
with open(metadata_uid_path, "rb") as f:
metadata_uid = pickle.load(f)
# code
code = metadata_uid["code"]
# frame_nums
frame_nums = code.shape[1]
# pitch
pitch = metadata_uid["pitch"]
# duration
duration = metadata_uid["duration"]
# phone_id
phone_id = np.array(
[
*map(
self.phone2id.get,
self.utt2phone[utt].replace("{", "").replace("}", "").split(),
)
]
)
else:
# code
code = np.load(self.utt2code_path[utt])
# frame_nums
frame_nums = code.shape[1]
# pitch
pitch = np.load(self.utt2pitch_path[utt])
# duration
duration = np.load(self.utt2duration_path[utt])
# phone_id
phone_id = np.array(
[
*map(
self.phone2id.get,
self.utt2phone[utt].replace("{", "").replace("}", "").split(),
)
]
)
# align length
code, pitch, duration, phone_id, frame_nums = self.align_length(
code, pitch, duration, phone_id, frame_nums
)
# spkid
spkid = self.utt2spkid[utt]
# get target and reference
out = self.get_target_and_reference(code, pitch, duration, phone_id, frame_nums)
code, ref_code = out["code"], out["ref_code"]
pitch, ref_pitch = out["pitch"], out["ref_pitch"]
duration, ref_duration = out["duration"], out["ref_duration"]
phone_id, ref_phone_id = out["phone_id"], out["ref_phone_id"]
frame_nums, ref_frame_nums = out["frame_nums"], out["ref_frame_nums"]
# phone_id_frame
assert len(phone_id) == len(duration)
phone_id_frame = []
for i in range(len(phone_id)):
phone_id_frame.extend([phone_id[i] for _ in range(duration[i])])
phone_id_frame = np.array(phone_id_frame)
# ref_phone_id_frame
assert len(ref_phone_id) == len(ref_duration)
ref_phone_id_frame = []
for i in range(len(ref_phone_id)):
ref_phone_id_frame.extend([ref_phone_id[i] for _ in range(ref_duration[i])])
ref_phone_id_frame = np.array(ref_phone_id_frame)
single_feature.update(
{
"code": code,
"frame_nums": frame_nums,
"pitch": pitch,
"duration": duration,
"phone_id": phone_id,
"phone_id_frame": phone_id_frame,
"ref_code": ref_code,
"ref_frame_nums": ref_frame_nums,
"ref_pitch": ref_pitch,
"ref_duration": ref_duration,
"ref_phone_id": ref_phone_id,
"ref_phone_id_frame": ref_phone_id_frame,
"spkid": spkid,
}
)
return single_feature
def get_num_frames(self, index):
utt_info = self.metadata[index]
return utt_info["num_frames"]
def align_length(self, code, pitch, duration, phone_id, frame_nums):
# aligh lenght of code, pitch, duration, phone_id, and frame nums
code_len = code.shape[1]
pitch_len = len(pitch)
dur_sum = sum(duration)
min_len = min(code_len, dur_sum)
code = code[:, :min_len]
if pitch_len >= min_len:
pitch = pitch[:min_len]
else:
pitch = np.pad(pitch, (0, min_len - pitch_len), mode="edge")
frame_nums = min_len
if dur_sum > min_len:
assert (duration[-1] - (dur_sum - min_len)) >= 0
duration[-1] = duration[-1] - (dur_sum - min_len)
assert duration[-1] >= 0
return code, pitch, duration, phone_id, frame_nums
def get_target_and_reference(self, code, pitch, duration, phone_id, frame_nums):
phone_nums = len(phone_id)
clip_phone_nums = np.random.randint(
int(phone_nums * 0.1), int(phone_nums * 0.5) + 1
)
clip_phone_nums = max(clip_phone_nums, 1)
assert clip_phone_nums < phone_nums and clip_phone_nums >= 1
if self.cfg.preprocess.clip_mode == "mid":
start_idx = np.random.randint(0, phone_nums - clip_phone_nums)
elif self.cfg.preprocess.clip_mode == "start":
if duration[0] == 0 and clip_phone_nums == 1:
start_idx = 1
else:
start_idx = 0
else:
assert self.cfg.preprocess.clip_mode in ["mid", "start"]
end_idx = start_idx + clip_phone_nums
start_frames = sum(duration[:start_idx])
end_frames = sum(duration[:end_idx])
new_code = np.concatenate(
(code[:, :start_frames], code[:, end_frames:]), axis=1
)
ref_code = code[:, start_frames:end_frames]
new_pitch = np.append(pitch[:start_frames], pitch[end_frames:])
ref_pitch = pitch[start_frames:end_frames]
new_duration = np.append(duration[:start_idx], duration[end_idx:])
ref_duration = duration[start_idx:end_idx]
new_phone_id = np.append(phone_id[:start_idx], phone_id[end_idx:])
ref_phone_id = phone_id[start_idx:end_idx]
new_frame_nums = frame_nums - (end_frames - start_frames)
ref_frame_nums = end_frames - start_frames
return {
"code": new_code,
"ref_code": ref_code,
"pitch": new_pitch,
"ref_pitch": ref_pitch,
"duration": new_duration,
"ref_duration": ref_duration,
"phone_id": new_phone_id,
"ref_phone_id": ref_phone_id,
"frame_nums": new_frame_nums,
"ref_frame_nums": ref_frame_nums,
}
class NS2Collator(BaseOfflineCollator):
def __init__(self, cfg):
BaseOfflineCollator.__init__(self, cfg)
def __call__(self, batch):
packed_batch_features = dict()
# code: (B, 16, T)
# frame_nums: (B,) not used
# pitch: (B, T)
# duration: (B, N)
# phone_id: (B, N)
# phone_id_frame: (B, T)
# ref_code: (B, 16, T')
# ref_frame_nums: (B,) not used
# ref_pitch: (B, T) not used
# ref_duration: (B, N') not used
# ref_phone_id: (B, N') not used
# ref_phone_frame: (B, T') not used
# spkid: (B,) not used
# phone_mask: (B, N)
# mask: (B, T)
# ref_mask: (B, T')
for key in batch[0].keys():
if key == "phone_id":
phone_ids = [torch.LongTensor(b["phone_id"]) for b in batch]
phone_masks = [torch.ones(len(b["phone_id"])) for b in batch]
packed_batch_features["phone_id"] = pad_sequence(
phone_ids,
batch_first=True,
padding_value=0,
)
packed_batch_features["phone_mask"] = pad_sequence(
phone_masks,
batch_first=True,
padding_value=0,
)
elif key == "phone_id_frame":
phone_id_frames = [torch.LongTensor(b["phone_id_frame"]) for b in batch]
masks = [torch.ones(len(b["phone_id_frame"])) for b in batch]
packed_batch_features["phone_id_frame"] = pad_sequence(
phone_id_frames,
batch_first=True,
padding_value=0,
)
packed_batch_features["mask"] = pad_sequence(
masks,
batch_first=True,
padding_value=0,
)
elif key == "ref_code":
ref_codes = [
torch.from_numpy(b["ref_code"]).transpose(0, 1) for b in batch
]
ref_masks = [torch.ones(max(b["ref_code"].shape[1], 1)) for b in batch]
packed_batch_features["ref_code"] = pad_sequence(
ref_codes,
batch_first=True,
padding_value=0,
).transpose(1, 2)
packed_batch_features["ref_mask"] = pad_sequence(
ref_masks,
batch_first=True,
padding_value=0,
)
elif key == "code":
codes = [torch.from_numpy(b["code"]).transpose(0, 1) for b in batch]
masks = [torch.ones(max(b["code"].shape[1], 1)) for b in batch]
packed_batch_features["code"] = pad_sequence(
codes,
batch_first=True,
padding_value=0,
).transpose(1, 2)
packed_batch_features["mask"] = pad_sequence(
masks,
batch_first=True,
padding_value=0,
)
elif key == "pitch":
values = [torch.from_numpy(b[key]) for b in batch]
packed_batch_features[key] = pad_sequence(
values, batch_first=True, padding_value=50.0
)
elif key == "duration":
values = [torch.from_numpy(b[key]) for b in batch]
packed_batch_features[key] = pad_sequence(
values, batch_first=True, padding_value=0
)
elif key == "frame_nums":
packed_batch_features["frame_nums"] = torch.LongTensor(
[b["frame_nums"] for b in batch]
)
elif key == "ref_frame_nums":
packed_batch_features["ref_frame_nums"] = torch.LongTensor(
[b["ref_frame_nums"] for b in batch]
)
else:
pass
return packed_batch_features
def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
if len(batch) == 0:
return 0
if len(batch) == max_sentences:
return 1
if num_tokens > max_tokens:
return 1
return 0
def batch_by_size(
indices,
num_tokens_fn,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
"""
Yield mini-batches of indices bucketed by size. Batches may contain
sequences of different lengths.
Args:
indices (List[int]): ordered list of dataset indices
num_tokens_fn (callable): function that returns the number of tokens at
a given index
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
required_batch_size_multiple (int, optional): require batch size to
be a multiple of N (default: 1).
"""
bsz_mult = required_batch_size_multiple
sample_len = 0
sample_lens = []
batch = []
batches = []
for i in range(len(indices)):
idx = indices[i]
num_tokens = num_tokens_fn(idx)
sample_lens.append(num_tokens)
sample_len = max(sample_len, num_tokens)
assert (
sample_len <= max_tokens
), "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(
idx, sample_len, max_tokens
)
num_tokens = (len(batch) + 1) * sample_len
if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
mod_len = max(
bsz_mult * (len(batch) // bsz_mult),
len(batch) % bsz_mult,
)
batches.append(batch[:mod_len])
batch = batch[mod_len:]
sample_lens = sample_lens[mod_len:]
sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
batch.append(idx)
if len(batch) > 0:
batches.append(batch)
return batches
|