File size: 10,685 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from concurrent.futures import ThreadPoolExecutor
import json
import os
import librosa
import numpy as np
import time
import torch
from pydub import AudioSegment
import soundfile as sf
import onnxruntime as ort
import tqdm
import subprocess
import re
from utils.logger import Logger, time_logger
def load_cfg(cfg_path):
"""
Load configuration from a JSON file.
Args:
cfg_path (str): Path to the configuration file.
Returns:
dict: Configuration dictionary.
"""
if not os.path.exists(cfg_path):
raise FileNotFoundError(
f"{cfg_path} not found. Please copy, configure, and rename `config.json.example` to `{cfg_path}`."
)
with open(cfg_path, "r") as f:
try:
cfg = json.load(f)
except json.decoder.JSONDecodeError as e:
raise TypeError(
"Please finish the `// TODO:` in the `config.json` file before running the script. Check README.md for details."
)
return cfg
def write_wav(path, sr, x):
"""Write numpy array to WAV file."""
sf.write(path, x, sr)
def write_mp3(path, sr, x):
"""Convert numpy array to MP3."""
try:
# Ensure x is in the correct format and normalize if necessary
if x.dtype != np.int16:
# Normalize the array to fit in int16 range if it's not already int16
x = np.int16(x / np.max(np.abs(x)) * 32767)
# Create audio segment from numpy array
audio = AudioSegment(
x.tobytes(), frame_rate=sr, sample_width=x.dtype.itemsize, channels=1
)
# Export as MP3 file
audio.export(path, format="mp3")
except Exception as e:
print(e)
print("Error: Failed to write MP3 file.")
def get_audio_files(folder_path):
"""Get all audio files in a folder."""
audio_files = []
for root, _, files in os.walk(folder_path):
if "_processed" in root:
continue
for file in files:
if ".temp" in file:
continue
if file.endswith((".mp3", ".wav", ".flac", ".m4a", ".aac")):
audio_files.append(os.path.join(root, file))
return audio_files
def get_specific_files(folder_path, ext):
"""Get specific files with a given extension in a folder."""
audio_files = []
for root, _, files in os.walk(folder_path):
if "_processed" in root:
continue
for file in files:
if ".temp" in file:
continue
if file.endswith(ext):
audio_files.append(os.path.join(root, file))
return audio_files
def export_to_srt(asr_result, file_path):
"""Export ASR result to SRT file."""
with open(file_path, "w") as f:
def format_time(seconds):
return (
time.strftime("%H:%M:%S", time.gmtime(seconds))
+ f",{int(seconds * 1000 % 1000):03d}"
)
for idx, segment in enumerate(asr_result):
f.write(f"{idx + 1}\n")
f.write(
f"{format_time(segment['start'])} --> {format_time(segment['end'])}\n"
)
f.write(f"{segment['speaker']}: {segment['text']}\n\n")
def detect_gpu():
"""Detect if GPU is available and print related information."""
logger = Logger.get_logger()
if "CUDA_VISIBLE_DEVICES" not in os.environ:
logger.info("ENV: CUDA_VISIBLE_DEVICES not set, use default setting")
else:
gpu_id = os.environ["CUDA_VISIBLE_DEVICES"]
logger.info(f"ENV: CUDA_VISIBLE_DEVICES = {gpu_id}")
if not torch.cuda.is_available():
logger.error("Torch CUDA: No GPU detected. torch.cuda.is_available() = False.")
return False
num_gpus = torch.cuda.device_count()
logger.debug(f"Torch CUDA: Detected {num_gpus} GPUs.")
for i in range(num_gpus):
gpu_name = torch.cuda.get_device_name(i)
logger.debug(f" * GPU {i}: {gpu_name}")
logger.debug("Torch: CUDNN version = " + str(torch.backends.cudnn.version()))
if not torch.backends.cudnn.is_available():
logger.error("Torch: CUDNN is not available.")
return False
logger.debug("Torch: CUDNN is available.")
ort_providers = ort.get_available_providers()
logger.debug(f"ORT: Available providers: {ort_providers}")
if "CUDAExecutionProvider" not in ort_providers:
logger.warning(
"ORT: CUDAExecutionProvider is not available. "
"Please install a compatible version of ONNX Runtime. "
"See https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html"
)
return True
def get_gpu_nums():
"""Get GPU nums by nvidia-smi."""
logger = Logger.get_logger()
try:
result = subprocess.check_output("nvidia-smi -L | wc -l", shell=True)
gpus_count = int(result.decode().strip())
except Exception as e:
logger.error("Error occurred while getting GPU count: " + str(e))
gpus_count = 8 # Default to 8 if GPU count retrieval fails
return gpus_count
def check_env(logger):
"""Check environment variables."""
if "http_proxy" in os.environ:
logger.info(f"ENV: http_proxy = {os.environ['http_proxy']}")
else:
logger.info("ENV: http_proxy not set")
if "https_proxy" in os.environ:
logger.info(f"ENV: https_proxy = {os.environ['https_proxy']}")
else:
logger.info("ENV: https_proxy not set")
if "HF_ENDPOINT" in os.environ:
logger.info(
f"ENV: HF_ENDPOINT = {os.environ['HF_ENDPOINT']}, if downloading slow, try `unset HF_ENDPOINT`"
)
else:
logger.info("ENV: HF_ENDPOINT not set")
hostname = os.popen("hostname").read().strip()
logger.debug(f"HOSTNAME: {hostname}")
environ_path = os.environ["PATH"]
environ_ld_library = os.environ.get("LD_LIBRARY_PATH", "")
logger.debug(f"ENV: PATH = {environ_path}, LD_LIBRARY_PATH = {environ_ld_library}")
@time_logger
def export_to_mp3(audio, asr_result, folder_path, file_name):
"""Export segmented audio to MP3 files."""
sr = audio["sample_rate"]
audio = audio["waveform"]
os.makedirs(folder_path, exist_ok=True)
# Function to process each segment in a separate thread
def process_segment(idx, segment):
start, end = int(segment["start"] * sr), int(segment["end"] * sr)
split_audio = audio[start:end]
split_audio = librosa.to_mono(split_audio)
out_file = f"{file_name}_{idx}.mp3"
out_path = os.path.join(folder_path, out_file)
write_mp3(out_path, sr, split_audio)
# Use ThreadPoolExecutor for concurrent execution
with ThreadPoolExecutor(max_workers=72) as executor:
# Submit each segment processing as a separate thread
futures = [
executor.submit(process_segment, idx, segment)
for idx, segment in enumerate(asr_result)
]
# Wait for all threads to complete
for future in tqdm.tqdm(
futures, total=len(asr_result), desc="Exporting to MP3"
):
future.result()
@time_logger
def export_to_wav(audio, asr_result, folder_path, file_name):
"""Export segmented audio to WAV files."""
sr = audio["sample_rate"]
audio = audio["waveform"]
os.makedirs(folder_path, exist_ok=True)
for idx, segment in enumerate(tqdm.tqdm(asr_result, desc="Exporting to WAV")):
start, end = int(segment["start"] * sr), int(segment["end"] * sr)
split_audio = audio[start:end]
split_audio = librosa.to_mono(split_audio)
out_file = f"{file_name}_{idx}.wav"
out_path = os.path.join(folder_path, out_file)
write_wav(out_path, sr, split_audio)
def get_char_count(text):
"""
Get the number of characters in the text.
Args:
text (str): Input text.
Returns:
int: Number of characters in the text.
"""
# Using regular expression to remove punctuation and spaces
cleaned_text = re.sub(r"[,.!?\"'οΌγοΌοΌββββ ]", "", text)
char_count = len(cleaned_text)
return char_count
def calculate_audio_stats(
data, min_duration=3, max_duration=30, min_dnsmos=3, min_char_count=2
):
"""
Reading the proviced json, calculate and return the audio ID and their duration that meet the given filtering criteria.
Args:
data: JSON.
min_duration: Minimum duration of the audio in seconds.
max_duration: Maximum duration of the audio in seconds.
min_dnsmos: Minimum DNSMOS value.
min_char_count: Minimum number of characters.
Returns:
valid_audio_stats: A list containing tuples of audio ID and their duration.
"""
all_audio_stats = []
valid_audio_stats = []
avg_durations = []
# iterate over each entry in the JSON to collect the average duration of the phonemes
for entry in data:
# remove punctuation and spaces
char_count = get_char_count(entry["text"])
duration = entry["end"] - entry["start"]
if char_count > 0:
avg_durations.append(duration / char_count)
# calculate the bounds for the average character duration
if len(avg_durations) > 0:
q1 = np.percentile(avg_durations, 25)
q3 = np.percentile(avg_durations, 75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
else:
# if no valid character data, use default values
lower_bound, upper_bound = 0, np.inf
# iterate over each entry in the JSON to apply all filtering criteria
for idx, entry in enumerate(data):
duration = entry["end"] - entry["start"]
dnsmos = entry["dnsmos"]
# remove punctuation and spaces
char_count = get_char_count(entry["text"])
if char_count > 0:
avg_char_duration = duration / char_count
else:
avg_char_duration = 0
# collect the duration of all audios
all_audio_stats.append((idx, duration))
# apply filtering criteria
if (
(min_duration <= duration <= max_duration) # withing duration range
and (dnsmos >= min_dnsmos)
and (char_count >= min_char_count)
and (
lower_bound <= avg_char_duration <= upper_bound
) # average character duration within bounds
):
valid_audio_stats.append((idx, duration))
return valid_audio_stats, all_audio_stats
|