File size: 19,246 Bytes
9b84ae0
 
 
 
 
 
 
 
0a611aa
9b84ae0
 
 
013fc9c
7490ef4
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350c67c
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350c67c
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5061d40
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e983ca8
 
9b84ae0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import json
import random
from typing import List

import spaces
import gradio as gr
from huggingface_hub import ModelCard

from src.tasks.images.sd import gen_img, ControlNetReq, SDReq, SDImg2ImgReq, SDInpaintReq


models = ["black-forest-labs/FLUX.1-dev"]
with open("data/images/loras/flux.json", "r") as f:
    loras = json.load(f)


def flux_tab():
    """
    Create the image tab for Generative Image Generation Models
    
    Args:
    models: list
        A list containing the models repository paths
    gap_iol, gap_la, gap_le, gap_eio, gap_io: Optional[List[dict]]
        A list of dictionaries containing the title and component for the custom gradio component
        Example:
        def gr_comp():
            gr.Label("Hello World")
        
        [
            {
                'title': "Title",
                'component': gr_comp()
            }
        ]
    loras: list
        A list of dictionaries containing the image and title for the Loras Gallery
        Generally a loaded json file from the data folder
    
    """
    def process_gaps(gaps: List[dict]):
        for gap in gaps:
            with gr.Accordion(gap['title']):
                gap['component']
    
    
    with gr.Row():
        with gr.Column():
            with gr.Group() as image_options:
                model = gr.Dropdown(label="Models", choices=models, value=models[0], interactive=True)
                prompt = gr.Textbox(lines=5, label="Prompt")
                negative_prompt = gr.Textbox(label="Negative Prompt")
                fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪")
            
            
            with gr.Accordion("Loras", open=True): # Lora Gallery
                lora_gallery = gr.Gallery(
                    label="Gallery",
                    value=[(lora['image'], lora['title']) for lora in loras],
                    allow_preview=False,
                    columns=[3],
                    type="pil"
                )
                
                with gr.Group():
                    with gr.Column():
                        with gr.Row():
                            custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path")
                            selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA")
                        
                        custom_lora_info = gr.HTML(visible=False)
                        add_lora = gr.Button(value="Add LoRA")
                        
                        enabled_loras = gr.State(value=[])
                        with gr.Group():
                            with gr.Row():
                                for i in range(6): # only support max 6 loras due to inference time
                                    with gr.Column():
                                        with gr.Column(scale=2):
                                            globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True)
                                        with gr.Column():
                                            globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False)

            
            with gr.Accordion("Embeddings", open=False): # Embeddings
                gr.Label("To be implemented")
            
            
            with gr.Accordion("Image Options"): # Image Options
                with gr.Tabs():
                    image_options = {
                        "img2img": "Upload Image",
                        "inpaint": "Upload Image",
                        "canny": "Upload Image",
                        "pose": "Upload Image",
                        "depth": "Upload Image",
                    }
                    
                    for image_option, label in image_options.items():
                        with gr.Tab(image_option):
                            if not image_option in ['inpaint', 'scribble']:
                                globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil")
                            elif image_option in ['inpaint', 'scribble']:
                                globals()[f"{image_option}_image"] = gr.ImageEditor(
                                    label=label,
                                    image_mode='RGB',
                                    layers=False,
                                    brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(),
                                    interactive=True,
                                    type="pil",
                                )
                            
                            # Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint)
                            globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True)
                    
                    resize_mode = gr.Radio(
                        label="Resize Mode",
                        choices=["crop and resize", "resize only", "resize and fill"],
                        value="resize and fill",
                        interactive=True
                    )
        
        
        with gr.Column():
            with gr.Group():
                output_images = gr.Gallery(
                        label="Output Images",
                        value=[],
                        allow_preview=True,
                        type="pil",
                        interactive=False,
                    )
                generate_images = gr.Button(value="Generate Images", variant="primary")            
            
            with gr.Accordion("Advance Settings", open=True):
                with gr.Row():
                    scheduler = gr.Dropdown(
                        label="Scheduler",
                        choices = [
                            "fm_euler"
                        ],
                        value="fm_euler",
                        interactive=True
                    )

                with gr.Row():
                    for column in range(2):
                        with gr.Column():
                            options = [
                                ("Height", "image_height", 64, 1024, 64, 1024, True),
                                ("Width", "image_width", 64, 1024, 64, 1024, True),
                                ("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True),
                                ("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True),
                                ("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False),
                                ("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True),
                                ("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True),
                            ]
                            for label, var_name, min_val, max_val, step, value, visible in options[column::2]:
                                globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True)
                
                with gr.Row():
                    refiner = gr.Checkbox(
                        label="Refiner 🧪",
                        value=False,
                    )
                    vae = gr.Checkbox(
                        label="VAE",
                        value=True,
                    )


    # Events
    # Base Options
    fast_generation.change(update_fast_generation, [model, fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore
    

    # Lora Gallery
    lora_gallery.select(selected_lora_from_gallery, None, selected_lora)
    custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora])
    add_lora.click(add_to_enabled_loras, [model, selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras])
    enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore

    for i in range(6):
        globals()[f"lora_remove_{i}"].click(
            lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index),
            [enabled_loras],
            [enabled_loras]
        )
    

    # Generate Image
    generate_images.click(
        generate_image, # type: ignore
        [
            model, prompt, negative_prompt, fast_generation, enabled_loras,
            lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
            img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore
            img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore
            resize_mode,
            scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
            image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore
            refiner, vae
        ],
        [output_images]
    )


# Functions
def update_fast_generation(model, fast_generation):
    if fast_generation:
        return (
            gr.update(
                value=3.5
            ),
            gr.update(
                value=8
            )
        )


def selected_lora_from_gallery(evt: gr.SelectData):
    return (
        gr.update(
            value=evt.index
        )
    )


def update_selected_lora(custom_lora):
    link = custom_lora.split("/")
    
    if len(link) == 2:
        model_card = ModelCard.load(custom_lora)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}"""
        
        custom_lora_info_css = """
        <style>
            .custom-lora-info {
                font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif;
                background: linear-gradient(135deg, #4a90e2, #7b61ff);
                color: white;
                padding: 16px;
                border-radius: 8px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin: 16px 0;
            }
            .custom-lora-header {
                font-size: 18px;
                font-weight: 600;
                margin-bottom: 12px;
            }
            .custom-lora-content {
                display: flex;
                align-items: center;
                background-color: rgba(255, 255, 255, 0.1);
                border-radius: 6px;
                padding: 12px;
            }
            .custom-lora-image {
                width: 80px;
                height: 80px;
                object-fit: cover;
                border-radius: 6px;
                margin-right: 16px;
            }
            .custom-lora-text h3 {
                margin: 0 0 8px 0;
                font-size: 16px;
                font-weight: 600;
            }
            .custom-lora-text small {
                font-size: 14px;
                opacity: 0.9;
            }
            .custom-trigger-word {
                background-color: rgba(255, 255, 255, 0.2);
                padding: 2px 6px;
                border-radius: 4px;
                font-weight: 600;
            }
        </style>
        """

        custom_lora_info_html = f"""
        <div class="custom-lora-info">
            <div class="custom-lora-header">Custom LoRA: {custom_lora}</div>
            <div class="custom-lora-content">
                <img class="custom-lora-image" src="{image_url}" alt="LoRA preview">
                <div class="custom-lora-text">
                    <h3>{link[1].replace("-", " ").replace("_", " ")}</h3>
                    <small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small>
                </div>
            </div>
        </div>
        """

        custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}"

        return (
            gr.update( # selected_lora
                value=custom_lora,
            ),
            gr.update( # custom_lora_info
                value=custom_lora_info_html,
                visible=True
            )
        )

    else:
        return (
            gr.update( # selected_lora
                value=custom_lora,
            ),
            gr.update( # custom_lora_info
                value=custom_lora_info_html if len(link) == 0 else "",
                visible=False
            )
        )


def add_to_enabled_loras(model, selected_lora, enabled_loras):
    lora_data = loras
    try:
        selected_lora = int(selected_lora)
        
        if 0 <= selected_lora: # is the index of the lora in the gallery
            lora_info = lora_data[selected_lora]
            enabled_loras.append({
                "repo_id": lora_info["repo"],
                "trigger_word": lora_info["trigger_word"]
            })
    except ValueError:
        link = selected_lora.split("/")
        if len(link) == 2:
            model_card = ModelCard.load(selected_lora)
            trigger_word = model_card.data.get("instance_prompt", "")
            enabled_loras.append({
                "repo_id": selected_lora,
                "trigger_word": trigger_word
            })
    
    return (
        gr.update( # selected_lora
            value=""
        ),
        gr.update( # custom_lora_info
            value="",
            visible=False
        ),
        gr.update( # enabled_loras
            value=enabled_loras
        )
    )


def update_lora_sliders(enabled_loras):
    sliders = []
    remove_buttons = []
    
    for lora in enabled_loras:
        sliders.append(
            gr.update(
                label=lora.get("repo_id", ""),
                info=f"Trigger Word: {lora.get('trigger_word', '')}",
                visible=True,
                interactive=True
            )
        )
        remove_buttons.append(
            gr.update(
                visible=True,
                interactive=True
            )
        )
    
    if len(sliders) < 6:
        for i in range(len(sliders), 6):
            sliders.append(
                gr.update(
                    visible=False
                )
            )
            remove_buttons.append(
                gr.update(
                    visible=False
                )
            )
    
    return *sliders, *remove_buttons


def remove_from_enabled_loras(enabled_loras, index):
    enabled_loras.pop(index)
    return (
        gr.update(
            value=enabled_loras
        )
    )


@spaces.GPU
def generate_image(
        model, prompt, negative_prompt, fast_generation, enabled_loras,
        lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5,
        img2img_image, inpaint_image, canny_image, pose_image, depth_image,
        img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength,
        resize_mode,
        scheduler, image_height, image_width, image_num_images_per_prompt,
        image_num_inference_steps, image_guidance_scale, image_seed,
        refiner, vae
    ):
        base_args = {
            "model": model,
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "fast_generation": fast_generation,
            "loras": None,
            "resize_mode": resize_mode,
            "scheduler": scheduler,
            "height": int(image_height),
            "width": int(image_width),
            "num_images_per_prompt": float(image_num_images_per_prompt),
            "num_inference_steps": float(image_num_inference_steps),
            "guidance_scale": float(image_guidance_scale),
            "seed": int(image_seed),
            "refiner": refiner,
            "vae": vae,
            "controlnet_config": None,
        }
        base_args = SDReq(**base_args)

        if len(enabled_loras) > 0:
            base_args.loras = []
            for enabled_lora, lora_slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
                if enabled_lora.get("repo_id", None):
                    base_args.loras.append(
                        {
                            "repo_id": enabled_lora["repo_id"],
                            "weight": lora_slider
                        }
                    )
        
        image = None
        mask_image = None
        strength = None
        
        if img2img_image:
            image = img2img_image
            strength = float(img2img_strength)
            
            base_args = SDImg2ImgReq(
                **base_args.__dict__,
                image=image,
                strength=strength
            )
        elif inpaint_image:
            image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None
            mask_image = inpaint_image['layers'][0] if image else None
            strength = float(inpaint_strength)
            
            base_args = SDInpaintReq(
                **base_args.__dict__,
                image=image,
                mask_image=mask_image,
                strength=strength
            )
        elif any([canny_image, pose_image, depth_image]):
            base_args.controlnet_config = ControlNetReq(
                controlnets=[],
                control_images=[],
                controlnet_conditioning_scale=[]
            )
            
            if canny_image:
                base_args.controlnet_config.controlnets.append("canny_fl")
                base_args.controlnet_config.control_images.append(canny_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
            if pose_image:
                base_args.controlnet_config.controlnets.append("pose_fl")
                base_args.controlnet_config.control_images.append(pose_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
            if depth_image:
                base_args.controlnet_config.controlnets.append("depth_fl")
                base_args.controlnet_config.control_images.append(depth_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
        else:
            base_args = SDReq(**base_args.__dict__)

        images = gen_img(base_args)
        
        return (
            gr.update(
                value=images,
                interactive=True
            )
        )