File size: 19,246 Bytes
9b84ae0 0a611aa 9b84ae0 013fc9c 7490ef4 9b84ae0 350c67c 9b84ae0 350c67c 9b84ae0 5061d40 9b84ae0 e983ca8 9b84ae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import json
import random
from typing import List
import spaces
import gradio as gr
from huggingface_hub import ModelCard
from src.tasks.images.sd import gen_img, ControlNetReq, SDReq, SDImg2ImgReq, SDInpaintReq
models = ["black-forest-labs/FLUX.1-dev"]
with open("data/images/loras/flux.json", "r") as f:
loras = json.load(f)
def flux_tab():
"""
Create the image tab for Generative Image Generation Models
Args:
models: list
A list containing the models repository paths
gap_iol, gap_la, gap_le, gap_eio, gap_io: Optional[List[dict]]
A list of dictionaries containing the title and component for the custom gradio component
Example:
def gr_comp():
gr.Label("Hello World")
[
{
'title': "Title",
'component': gr_comp()
}
]
loras: list
A list of dictionaries containing the image and title for the Loras Gallery
Generally a loaded json file from the data folder
"""
def process_gaps(gaps: List[dict]):
for gap in gaps:
with gr.Accordion(gap['title']):
gap['component']
with gr.Row():
with gr.Column():
with gr.Group() as image_options:
model = gr.Dropdown(label="Models", choices=models, value=models[0], interactive=True)
prompt = gr.Textbox(lines=5, label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪")
with gr.Accordion("Loras", open=True): # Lora Gallery
lora_gallery = gr.Gallery(
label="Gallery",
value=[(lora['image'], lora['title']) for lora in loras],
allow_preview=False,
columns=[3],
type="pil"
)
with gr.Group():
with gr.Column():
with gr.Row():
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path")
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA")
custom_lora_info = gr.HTML(visible=False)
add_lora = gr.Button(value="Add LoRA")
enabled_loras = gr.State(value=[])
with gr.Group():
with gr.Row():
for i in range(6): # only support max 6 loras due to inference time
with gr.Column():
with gr.Column(scale=2):
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True)
with gr.Column():
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False)
with gr.Accordion("Embeddings", open=False): # Embeddings
gr.Label("To be implemented")
with gr.Accordion("Image Options"): # Image Options
with gr.Tabs():
image_options = {
"img2img": "Upload Image",
"inpaint": "Upload Image",
"canny": "Upload Image",
"pose": "Upload Image",
"depth": "Upload Image",
}
for image_option, label in image_options.items():
with gr.Tab(image_option):
if not image_option in ['inpaint', 'scribble']:
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil")
elif image_option in ['inpaint', 'scribble']:
globals()[f"{image_option}_image"] = gr.ImageEditor(
label=label,
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(),
interactive=True,
type="pil",
)
# Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint)
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True)
resize_mode = gr.Radio(
label="Resize Mode",
choices=["crop and resize", "resize only", "resize and fill"],
value="resize and fill",
interactive=True
)
with gr.Column():
with gr.Group():
output_images = gr.Gallery(
label="Output Images",
value=[],
allow_preview=True,
type="pil",
interactive=False,
)
generate_images = gr.Button(value="Generate Images", variant="primary")
with gr.Accordion("Advance Settings", open=True):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
choices = [
"fm_euler"
],
value="fm_euler",
interactive=True
)
with gr.Row():
for column in range(2):
with gr.Column():
options = [
("Height", "image_height", 64, 1024, 64, 1024, True),
("Width", "image_width", 64, 1024, 64, 1024, True),
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True),
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True),
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False),
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True),
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True),
]
for label, var_name, min_val, max_val, step, value, visible in options[column::2]:
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True)
with gr.Row():
refiner = gr.Checkbox(
label="Refiner 🧪",
value=False,
)
vae = gr.Checkbox(
label="VAE",
value=True,
)
# Events
# Base Options
fast_generation.change(update_fast_generation, [model, fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore
# Lora Gallery
lora_gallery.select(selected_lora_from_gallery, None, selected_lora)
custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora])
add_lora.click(add_to_enabled_loras, [model, selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras])
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore
for i in range(6):
globals()[f"lora_remove_{i}"].click(
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index),
[enabled_loras],
[enabled_loras]
)
# Generate Image
generate_images.click(
generate_image, # type: ignore
[
model, prompt, negative_prompt, fast_generation, enabled_loras,
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore
resize_mode,
scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore
refiner, vae
],
[output_images]
)
# Functions
def update_fast_generation(model, fast_generation):
if fast_generation:
return (
gr.update(
value=3.5
),
gr.update(
value=8
)
)
def selected_lora_from_gallery(evt: gr.SelectData):
return (
gr.update(
value=evt.index
)
)
def update_selected_lora(custom_lora):
link = custom_lora.split("/")
if len(link) == 2:
model_card = ModelCard.load(custom_lora)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}"""
custom_lora_info_css = """
<style>
.custom-lora-info {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif;
background: linear-gradient(135deg, #4a90e2, #7b61ff);
color: white;
padding: 16px;
border-radius: 8px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin: 16px 0;
}
.custom-lora-header {
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;
}
.custom-lora-content {
display: flex;
align-items: center;
background-color: rgba(255, 255, 255, 0.1);
border-radius: 6px;
padding: 12px;
}
.custom-lora-image {
width: 80px;
height: 80px;
object-fit: cover;
border-radius: 6px;
margin-right: 16px;
}
.custom-lora-text h3 {
margin: 0 0 8px 0;
font-size: 16px;
font-weight: 600;
}
.custom-lora-text small {
font-size: 14px;
opacity: 0.9;
}
.custom-trigger-word {
background-color: rgba(255, 255, 255, 0.2);
padding: 2px 6px;
border-radius: 4px;
font-weight: 600;
}
</style>
"""
custom_lora_info_html = f"""
<div class="custom-lora-info">
<div class="custom-lora-header">Custom LoRA: {custom_lora}</div>
<div class="custom-lora-content">
<img class="custom-lora-image" src="{image_url}" alt="LoRA preview">
<div class="custom-lora-text">
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3>
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small>
</div>
</div>
</div>
"""
custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}"
return (
gr.update( # selected_lora
value=custom_lora,
),
gr.update( # custom_lora_info
value=custom_lora_info_html,
visible=True
)
)
else:
return (
gr.update( # selected_lora
value=custom_lora,
),
gr.update( # custom_lora_info
value=custom_lora_info_html if len(link) == 0 else "",
visible=False
)
)
def add_to_enabled_loras(model, selected_lora, enabled_loras):
lora_data = loras
try:
selected_lora = int(selected_lora)
if 0 <= selected_lora: # is the index of the lora in the gallery
lora_info = lora_data[selected_lora]
enabled_loras.append({
"repo_id": lora_info["repo"],
"trigger_word": lora_info["trigger_word"]
})
except ValueError:
link = selected_lora.split("/")
if len(link) == 2:
model_card = ModelCard.load(selected_lora)
trigger_word = model_card.data.get("instance_prompt", "")
enabled_loras.append({
"repo_id": selected_lora,
"trigger_word": trigger_word
})
return (
gr.update( # selected_lora
value=""
),
gr.update( # custom_lora_info
value="",
visible=False
),
gr.update( # enabled_loras
value=enabled_loras
)
)
def update_lora_sliders(enabled_loras):
sliders = []
remove_buttons = []
for lora in enabled_loras:
sliders.append(
gr.update(
label=lora.get("repo_id", ""),
info=f"Trigger Word: {lora.get('trigger_word', '')}",
visible=True,
interactive=True
)
)
remove_buttons.append(
gr.update(
visible=True,
interactive=True
)
)
if len(sliders) < 6:
for i in range(len(sliders), 6):
sliders.append(
gr.update(
visible=False
)
)
remove_buttons.append(
gr.update(
visible=False
)
)
return *sliders, *remove_buttons
def remove_from_enabled_loras(enabled_loras, index):
enabled_loras.pop(index)
return (
gr.update(
value=enabled_loras
)
)
@spaces.GPU
def generate_image(
model, prompt, negative_prompt, fast_generation, enabled_loras,
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5,
img2img_image, inpaint_image, canny_image, pose_image, depth_image,
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength,
resize_mode,
scheduler, image_height, image_width, image_num_images_per_prompt,
image_num_inference_steps, image_guidance_scale, image_seed,
refiner, vae
):
base_args = {
"model": model,
"prompt": prompt,
"negative_prompt": negative_prompt,
"fast_generation": fast_generation,
"loras": None,
"resize_mode": resize_mode,
"scheduler": scheduler,
"height": int(image_height),
"width": int(image_width),
"num_images_per_prompt": float(image_num_images_per_prompt),
"num_inference_steps": float(image_num_inference_steps),
"guidance_scale": float(image_guidance_scale),
"seed": int(image_seed),
"refiner": refiner,
"vae": vae,
"controlnet_config": None,
}
base_args = SDReq(**base_args)
if len(enabled_loras) > 0:
base_args.loras = []
for enabled_lora, lora_slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
if enabled_lora.get("repo_id", None):
base_args.loras.append(
{
"repo_id": enabled_lora["repo_id"],
"weight": lora_slider
}
)
image = None
mask_image = None
strength = None
if img2img_image:
image = img2img_image
strength = float(img2img_strength)
base_args = SDImg2ImgReq(
**base_args.__dict__,
image=image,
strength=strength
)
elif inpaint_image:
image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None
mask_image = inpaint_image['layers'][0] if image else None
strength = float(inpaint_strength)
base_args = SDInpaintReq(
**base_args.__dict__,
image=image,
mask_image=mask_image,
strength=strength
)
elif any([canny_image, pose_image, depth_image]):
base_args.controlnet_config = ControlNetReq(
controlnets=[],
control_images=[],
controlnet_conditioning_scale=[]
)
if canny_image:
base_args.controlnet_config.controlnets.append("canny_fl")
base_args.controlnet_config.control_images.append(canny_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
if pose_image:
base_args.controlnet_config.controlnets.append("pose_fl")
base_args.controlnet_config.control_images.append(pose_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
if depth_image:
base_args.controlnet_config.controlnets.append("depth_fl")
base_args.controlnet_config.control_images.append(depth_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
else:
base_args = SDReq(**base_args.__dict__)
images = gen_img(base_args)
return (
gr.update(
value=images,
interactive=True
)
)
|