File size: 5,145 Bytes
42ae52a
 
 
 
 
 
 
 
 
 
 
37112ef
42ae52a
3a5022f
37112ef
daf9c75
42ae52a
 
 
37112ef
 
 
42ae52a
 
 
 
 
07dc8e6
42ae52a
 
37112ef
07dc8e6
42ae52a
a685f13
 
42ae52a
 
a685f13
 
07dc8e6
42ae52a
 
37112ef
42ae52a
 
07dc8e6
42ae52a
37112ef
07dc8e6
42ae52a
 
 
ecfb7d9
42ae52a
 
07dc8e6
42ae52a
 
 
 
 
 
07dc8e6
42ae52a
07dc8e6
37112ef
 
 
 
42ae52a
 
 
 
 
 
 
 
 
 
 
 
 
07dc8e6
42ae52a
b6b27f8
42ae52a
 
 
 
 
 
 
37112ef
42ae52a
b6b27f8
42ae52a
07dc8e6
42ae52a
 
 
 
07dc8e6
42ae52a
 
 
07dc8e6
42ae52a
 
07dc8e6
42ae52a
 
07dc8e6
42ae52a
 
 
07dc8e6
42ae52a
 
 
 
ab735b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import random

import gradio as gr
import torch
from diffusers import (
    AutoPipelineForText2Image,
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
)
from huggingface_hub import hf_hub_download
from diffusers.schedulers import *
# from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1

from .common_helpers import ControlNetReq, BaseReq, BaseImg2ImgReq, BaseInpaintReq, cleanup, get_controlnet_images, resize_images
from modules.pipelines.sdxl_pipelines import device, models, sdxl_vae, controlnets
from modules.pipelines.common_pipelines import refiner


def get_pipe(request: BaseReq | BaseImg2ImgReq | BaseInpaintReq):
    def get_scheduler(pipeline, scheduler: str):
        ...
    
    for m in models:
        if m['repo_id'] == request.model:
            pipe_args = {
                "pipeline": m['pipeline'],
            }

            # Set ControlNet config
            if request.controlnet_config:
                pipe_args["controlnet"] = [controlnets]

            # Choose Pipeline Mode
            if isinstance(request, BaseInpaintReq):
                pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
            elif isinstance(request, BaseImg2ImgReq):
                pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
            elif isinstance(request, BaseReq):
                pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)

            # Enable or Disable Refiner
            if request.vae:
                pipe_args["pipeline"].vae = sdxl_vae
            elif not request.vae:
                pipe_args["pipeline"].vae = None

            # Set Scheduler
            pipe_args["pipeline"].scheduler = get_scheduler(pipe_args["pipeline"], request.scheduler)

            # Set Loras
            if request.loras:
                for i, lora in enumerate(request.loras):
                    pipe_args["pipeline"].load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
                adapter_names = [f"lora_{i}" for i in range(len(request.loras))]
                adapter_weights = [lora['weight'] for lora in request.loras]

                if request.fast_generation:
                    hyper_lora = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
                    hyper_weight = 0.125
                    pipe_args["pipeline"].load_lora_weights(hyper_lora, adapter_name="hyper_lora")
                    adapter_names.append("hyper_lora")
                    adapter_weights.append(hyper_weight)

                pipe_args["pipeline"].set_adapters(adapter_names, adapter_weights)

            # Set Embeddings
            if request.embeddings:
                ...
            
            return pipe_args


def get_prompt_attention(pipeline, prompt):
    return get_weighted_text_embeddings_flux1(pipeline, prompt)


# Gen Function
def gen_img(request: BaseReq | BaseImg2ImgReq | BaseInpaintReq):
    pipe_args = get_pipe(request)
    pipeline = pipe_args["pipeline"]
    try:
        positive_prompt_embeds, positive_prompt_pooled = get_prompt_attention(pipeline, request.prompt)

        # Common Args
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        args = {
            'prompt_embeds': positive_prompt_embeds,
            'pooled_prompt_embeds': positive_prompt_pooled,
            'height': request.height,
            'width': request.width,
            'num_images_per_prompt': request.num_images_per_prompt,
            'num_inference_steps': request.num_inference_steps,
            'clip_skip': request.clip_skip,
            'guidance_scale': request.guidance_scale,
            'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
        }

        if request.controlnet_config:
            args['control_mode'] = get_control_mode(request.controlnet_config)
            args['control_images'] = get_controlnet_images(request.controlnet_config, request.height, request.width, request.resize_mode)
            args['controlnet_conditioning_scale'] = request.controlnet_config.controlnet_conditioning_scale

        if isinstance(request, (BaseImg2ImgReq, BaseInpaintReq)):
            args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)[0]
            args['strength'] = request.strength

        if isinstance(request, BaseInpaintReq):
            args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)[0]

        # Generate
        images = pipeline(**args).images

        # Refiner
        if request.refiner:
            images = refiner(image=images, prompt=request.prompt, num_inference_steps=40, denoising_start=0.7).images

        return images
    except Exception as e:
        cleanup(pipeline, request.loras)
        raise gr.Error(f"Error: {e}")
    finally:
        cleanup(pipeline, request.loras)