File size: 8,719 Bytes
42ae52a
 
 
 
 
 
 
 
60d107b
42ae52a
 
 
7733adf
d9f8976
 
 
 
42ae52a
 
 
60d107b
d9f8976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ae52a
d9f8976
 
 
 
 
 
 
 
 
 
 
42ae52a
d9f8976
 
 
 
42ae52a
d9f8976
42ae52a
 
d9f8976
 
42ae52a
d9f8976
 
 
 
 
 
 
 
 
 
42ae52a
d9f8976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ae52a
 
 
daf9c75
42ae52a
 
 
 
80bab12
daf9c75
42ae52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f8976
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# tabs/image_tab.py

import gradio as gr
from modules.events.flux_events import *
from modules.events.sdxl_events import *
from modules.helpers.common_helpers import *
from modules.helpers.flux_helpers import *
from modules.helpers.sdxl_helpers import *
from config import flux_models, sdxl_models, flux_loras


def image_tab():
    with gr.Tabs():
        with gr.Tab("Flux"):
            flux_tab()
        with gr.Tab("SDXL"):
            sdxl_tab()


def flux_tab():
    loras = flux_loras
    with gr.Row():
        with gr.Column():
            with gr.Group() as image_options:
                model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True)
                prompt = gr.Textbox(lines=5, label="Prompt")
                fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪")
            
            
            with gr.Accordion("Loras", open=True): # Lora Gallery
                lora_gallery = gr.Gallery(
                    label="Gallery",
                    value=[(lora['image'], lora['title']) for lora in loras],
                    allow_preview=False,
                    columns=3,
                    rows=3,
                    type="pil"
                )
                
                with gr.Group():
                    with gr.Column():
                        with gr.Row():
                            custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path")
                            selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA")
                        
                        custom_lora_info = gr.HTML(visible=False)
                        add_lora = gr.Button(value="Add LoRA")
                        
                        enabled_loras = gr.State(value=[])
                        with gr.Group():
                            with gr.Row():
                                for i in range(6): # only support max 6 loras due to inference time
                                    with gr.Column():
                                        with gr.Column(scale=2):
                                            globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True)
                                        with gr.Column():
                                            globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False)

            
            with gr.Accordion("Embeddings", open=False): # Embeddings
                gr.Label("To be implemented")
            
            
            with gr.Accordion("Image Options", open=False): # Image Options
                with gr.Tabs():
                    image_options = {
                        "img2img": "Upload Image",
                        "inpaint": "Upload Image",
                        "canny": "Upload Image",
                        "pose": "Upload Image",
                        "depth": "Upload Image",
                    }
                    
                    for image_option, label in image_options.items():
                        with gr.Tab(image_option):
                            if not image_option in ['inpaint', 'scribble']:
                                globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil")
                            elif image_option in ['inpaint', 'scribble']:
                                globals()[f"{image_option}_image"] = gr.ImageEditor(
                                    label=label,
                                    image_mode='RGB',
                                    layers=False,
                                    brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(),
                                    interactive=True,
                                    type="pil",
                                )
                            
                            # Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint)
                            globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True)
                    
                    resize_mode = gr.Radio(
                        label="Resize Mode",
                        choices=["crop and resize", "resize only", "resize and fill"],
                        value="resize and fill",
                        interactive=True
                    )
        
        
        with gr.Column():
            with gr.Group():
                output_images = gr.Gallery(
                        label="Output Images",
                        value=[],
                        allow_preview=True,
                        type="pil",
                        interactive=False,
                    )
                generate_images = gr.Button(value="Generate Images", variant="primary")            
            
            with gr.Accordion("Advance Settings", open=True):
                with gr.Row():
                    scheduler = gr.Dropdown(
                        label="Scheduler",
                        choices = [
                            "fm_euler"
                        ],
                        value="fm_euler",
                        interactive=True
                    )

                with gr.Row():
                    for column in range(2):
                        with gr.Column():
                            options = [
                                ("Height", "image_height", 64, 1024, 64, 1024, True),
                                ("Width", "image_width", 64, 1024, 64, 1024, True),
                                ("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True),
                                ("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True),
                                ("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False),
                                ("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True),
                                ("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True),
                            ]
                            for label, var_name, min_val, max_val, step, value, visible in options[column::2]:
                                globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True)
                
                with gr.Row():
                    refiner = gr.Checkbox(
                        label="Refiner 🧪",
                        value=False,
                    )
                    vae = gr.Checkbox(
                        label="VAE",
                        value=True,
                    )
    
    # Events
    # Base Options
    fast_generation.change(update_fast_generation, [fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore
    

    # Lora Gallery
    lora_gallery.select(selected_lora_from_gallery, None, selected_lora)
    custom_lora.change(update_selected_lora, custom_lora, [selected_lora, custom_lora])
    add_lora.click(add_to_enabled_loras, [selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras])
    enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore

    for i in range(6):
        globals()[f"lora_remove_{i}"].click(
            lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index),
            [enabled_loras],
            [enabled_loras]
        )
    

    # Generate Image
    generate_images.click(
        generate_image, # type: ignore
        [
            model, prompt, fast_generation, enabled_loras,
            lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
            img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore
            img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore
            resize_mode,
            scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
            image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore
            refiner, vae
        ],
        [output_images]
    )


def sdxl_tab():
    gr.Label("To be implemented")