File size: 14,887 Bytes
9b84ae0 056aaff 9b84ae0 870b47c 9b84ae0 6324529 9b84ae0 6324529 9b84ae0 6324529 9b84ae0 c7554bf 9b84ae0 c7554bf 9b84ae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import gc
import random
from typing import List, Optional
import torch
import numpy as np
from pydantic import BaseModel
from PIL import Image
from diffusers import (
FluxPipeline,
FluxImg2ImgPipeline,
FluxInpaintPipeline,
FluxControlNetPipeline,
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
AutoPipelineForText2Image,
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
)
from diffusers.schedulers import *
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from controlnet_aux.processor import Processor
from photomaker import (
PhotoMakerStableDiffusionXLPipeline,
PhotoMakerStableDiffusionXLControlNetPipeline,
analyze_faces
)
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1
from .init_sys import device, models, refiner, safety_checker, feature_extractor, controlnet_models, face_detector
# Models
class ControlNetReq(BaseModel):
controlnets: List[str] # ["canny", "tile", "depth"]
control_images: List[Image.Image]
controlnet_conditioning_scale: List[float]
class Config:
arbitrary_types_allowed=True
class SDReq(BaseModel):
model: str = ""
prompt: str = ""
negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev"
fast_generation: Optional[bool] = True
loras: Optional[list] = []
embeddings: Optional[list] = []
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
scheduler: Optional[str] = "euler_fl"
height: int = 1024
width: int = 1024
num_images_per_prompt: int = 1
num_inference_steps: int = 8
guidance_scale: float = 3.5
seed: Optional[int] = 0
refiner: bool = False
vae: bool = True
controlnet_config: Optional[ControlNetReq] = None
photomaker_images: Optional[List[Image.Image]] = None
class Config:
arbitrary_types_allowed=True
class SDImg2ImgReq(SDReq):
image: Image.Image
strength: float = 1.0
class Config:
arbitrary_types_allowed=True
class SDInpaintReq(SDImg2ImgReq):
mask_image: Image.Image
class Config:
arbitrary_types_allowed=True
# Helper functions
def get_controlnet(controlnet_config: ControlNetReq):
control_mode = []
controlnet = []
for m in controlnet_models:
for c in controlnet_config.controlnets:
if c in m["layers"]:
control_mode.append(m["layers"].index(c))
controlnet.append(m["controlnet"])
return controlnet, control_mode
def get_pipe(request: SDReq | SDImg2ImgReq | SDInpaintReq):
for m in models:
if m["repo_id"] == request.model:
pipeline = m['pipeline']
controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None)
pipe_args = {
"pipeline": pipeline,
"control_mode": control_mode,
}
if request.controlnet_config:
pipe_args["controlnet"] = controlnet
if not request.photomaker_images:
if isinstance(request, SDReq):
pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
elif isinstance(request, SDImg2ImgReq):
pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
elif isinstance(request, SDInpaintReq):
pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
else:
raise ValueError(f"Unknown request type: {type(request)}")
elif isinstance(request, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
if request.controlnet_config:
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLControlNetPipeline.from_pipe(**pipe_args)
else:
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLPipeline.from_pipe(**pipe_args)
else:
raise ValueError(f"Invalid request type: {type(request)}")
return pipe_args
def load_scheduler(pipeline, scheduler):
schedulers = {
"dpmpp_2m": (DPMSolverMultistepScheduler, {}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}),
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}),
"dpmpp_sde": (DPMSolverSinglestepScheduler, {}),
"dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"dpm2": (KDPM2DiscreteScheduler, {}),
"dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"dpm2_a": (KDPM2AncestralDiscreteScheduler, {}),
"dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"euler": (EulerDiscreteScheduler, {}),
"euler_a": (EulerAncestralDiscreteScheduler, {}),
"heun": (HeunDiscreteScheduler, {}),
"lms": (LMSDiscreteScheduler, {}),
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"deis": (DEISMultistepScheduler, {}),
"unipc": (UniPCMultistepScheduler, {}),
"fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
}
scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
if scheduler_class is not None:
scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
else:
raise ValueError(f"Unknown scheduler: {scheduler}")
return scheduler
def load_loras(pipeline, loras, fast_generation):
for i, lora in enumerate(loras):
pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
adapter_names = [f"lora_{i}" for i in range(len(loras))]
adapter_weights = [lora['weight'] for lora in loras]
if fast_generation:
hyper_lora = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors"
)
hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0
pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora")
adapter_names.append("hyper_lora")
adapter_weights.append(hyper_weight)
pipeline.set_adapters(adapter_names, adapter_weights)
def load_xl_embeddings(pipeline, embeddings):
for embedding in embeddings:
state_dict = load_file(hf_hub_download(embedding['repo_id']))
pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
for image in images:
if resize_mode == "resize_only":
image = image.resize((width, height))
elif resize_mode == "crop_and_resize":
image = image.crop((0, 0, width, height))
elif resize_mode == "resize_and_fill":
image = image.resize((width, height), Image.Resampling.LANCZOS)
return images
def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str):
response_images = []
control_images = resize_images(control_images, height, width, resize_mode)
for controlnet, image in zip(controlnets, control_images):
if controlnet == "canny" or controlnet == "canny_xs" or controlnet == "canny_fl":
processor = Processor('canny')
elif controlnet == "depth" or controlnet == "depth_xs" or controlnet == "depth_fl":
processor = Processor('depth_midas')
elif controlnet == "pose" or controlnet == "pose_fl":
processor = Processor('openpose_full')
elif controlnet == "scribble":
processor = Processor('scribble')
else:
raise ValueError(f"Invalid Controlnet: {controlnet}")
response_images.append(processor(image, to_pil=True))
return response_images
def check_image_safety(images: List[Image.Image]):
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
has_nsfw_concepts = safety_checker(
images=[images],
clip_input=safety_checker_input.pixel_values.to("cuda"),
)
return has_nsfw_concepts[1]
def get_prompt_attention(pipeline, prompt, negative_prompt):
if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)):
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt)
return prompt_embeds, None, pooled_prompt_embeds, None
elif isinstance(pipeline, StableDiffusionXLPipeline):
prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt)
return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
else:
raise ValueError(f"Invalid pipeline type: {type(pipeline)}")
def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str):
image_input_ids = []
image_id_embeds = []
photomaker_images = resize_images(photomaker_images, height, width, resize_mode)
for image in photomaker_images:
image_input_ids.append(img)
img = np.array(image)[:, :, ::-1]
faces = analyze_faces(face_detector, image)
if len(faces) > 0:
image_id_embeds.append(torch.from_numpy(faces[0]['embeddings']))
else:
raise ValueError("No face detected in the image")
return image_input_ids, image_id_embeds
def cleanup(pipeline, loras = None, embeddings = None):
if loras:
pipeline.disable_lora()
pipeline.unload_lora_weights()
if embeddings:
pipeline.unload_textual_inversion()
gc.collect()
torch.cuda.empty_cache()
# Gen function
def gen_img(
request: SDReq | SDImg2ImgReq | SDInpaintReq
):
pipeline_args = get_pipe(request)
pipeline = pipeline_args['pipeline']
try:
pipeline.scheduler = load_scheduler(pipeline, request.scheduler)
load_loras(pipeline, request.loras, request.fast_generation)
load_xl_embeddings(pipeline, request.embeddings)
control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None
photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None)
positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt)
# Common args
args = {
'prompt_embeds': positive_prompt_embeds,
'pooled_prompt_embeds': positive_prompt_pooled,
'height': request.height,
'width': request.width,
'num_images_per_prompt': request.num_images_per_prompt,
'num_inference_steps': request.num_inference_steps,
'guidance_scale': request.guidance_scale,
'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
}
if isinstance(pipeline, any([StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline])):
args['clip_skip'] = request.clip_skip
args['negative_prompt_embeds'] = negative_prompt_embeds
args['negative_pooled_prompt_embeds'] = negative_prompt_pooled
if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
args['control_mode'] = pipeline_args['control_mode']
args['control_image'] = control_images
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
if isinstance(request, SDReq):
args['image'] = control_images
elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)):
args['control_image'] = control_images
if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
args['input_id_images'] = photomaker_images
args['input_id_embeds'] = photomaker_id_embeds
args['start_merge_step'] = 10
if isinstance(request, SDImg2ImgReq):
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
args['strength'] = request.strength
elif isinstance(request, SDInpaintReq):
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)
args['strength'] = request.strength
images = pipeline(**args).images
if request.refiner:
images = refiner(
prompt=request.prompt,
num_inference_steps=40,
denoising_start=0.7,
image=images.images
).images
cleanup(pipeline, request.loras, request.embeddings)
return images
except Exception as e:
cleanup(pipeline, request.loras, request.embeddings)
raise ValueError(f"Error generating image: {e}") from e
|