File size: 14,887 Bytes
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056aaff
 
 
9b84ae0
 
 
 
 
 
 
 
 
 
870b47c
9b84ae0
 
 
 
 
 
 
 
 
 
6324529
 
 
9b84ae0
 
 
 
 
6324529
 
 
9b84ae0
 
 
 
6324529
 
 
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7554bf
 
 
 
 
 
 
 
 
 
 
 
 
 
9b84ae0
c7554bf
9b84ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import gc
import random
from typing import List, Optional

import torch
import numpy as np
from pydantic import BaseModel
from PIL import Image
from diffusers import (
    FluxPipeline,
    FluxImg2ImgPipeline,
    FluxInpaintPipeline,
    FluxControlNetPipeline,
    StableDiffusionXLPipeline,
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLControlNetPipeline,
    StableDiffusionXLControlNetImg2ImgPipeline,
    StableDiffusionXLControlNetInpaintPipeline,
    AutoPipelineForText2Image,
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
)
from diffusers.schedulers import *
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from controlnet_aux.processor import Processor
from photomaker import (
    PhotoMakerStableDiffusionXLPipeline,
    PhotoMakerStableDiffusionXLControlNetPipeline,
    analyze_faces
)
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1

from .init_sys import device, models, refiner, safety_checker, feature_extractor, controlnet_models, face_detector


# Models
class ControlNetReq(BaseModel):
    controlnets: List[str] # ["canny", "tile", "depth"]
    control_images: List[Image.Image]
    controlnet_conditioning_scale: List[float]
    
    class Config:
        arbitrary_types_allowed=True


class SDReq(BaseModel):
    model: str = ""
    prompt: str = ""
    negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev"
    fast_generation: Optional[bool] = True
    loras: Optional[list] = []
    embeddings: Optional[list] = []
    resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
    scheduler: Optional[str] = "euler_fl"
    height: int = 1024
    width: int = 1024
    num_images_per_prompt: int = 1
    num_inference_steps: int = 8
    guidance_scale: float = 3.5
    seed: Optional[int] = 0
    refiner: bool = False
    vae: bool = True
    controlnet_config: Optional[ControlNetReq] = None
    photomaker_images: Optional[List[Image.Image]] = None
    
    class Config:
        arbitrary_types_allowed=True


class SDImg2ImgReq(SDReq):
    image: Image.Image
    strength: float = 1.0
    
    class Config:
        arbitrary_types_allowed=True


class SDInpaintReq(SDImg2ImgReq):
    mask_image: Image.Image
    
    class Config:
        arbitrary_types_allowed=True


# Helper functions
def get_controlnet(controlnet_config: ControlNetReq):
    control_mode = []
    controlnet = []
    
    for m in controlnet_models:
        for c in controlnet_config.controlnets:
            if c in m["layers"]:
                control_mode.append(m["layers"].index(c))
                controlnet.append(m["controlnet"])
    
    return controlnet, control_mode


def get_pipe(request: SDReq | SDImg2ImgReq | SDInpaintReq):
    for m in models:
        if m["repo_id"] == request.model:
            pipeline = m['pipeline']
            controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None)
            
            pipe_args = {
                "pipeline": pipeline,
                "control_mode": control_mode,
            }
            if request.controlnet_config:
                pipe_args["controlnet"] = controlnet

            if not request.photomaker_images:
                if isinstance(request, SDReq):
                    pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
                elif isinstance(request, SDImg2ImgReq):
                    pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
                elif isinstance(request, SDInpaintReq):
                    pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
                else:
                    raise ValueError(f"Unknown request type: {type(request)}")
            elif isinstance(request, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
                if request.controlnet_config:
                    pipe_args['pipeline'] = PhotoMakerStableDiffusionXLControlNetPipeline.from_pipe(**pipe_args)
                else:
                    pipe_args['pipeline'] = PhotoMakerStableDiffusionXLPipeline.from_pipe(**pipe_args)
            else:
                raise ValueError(f"Invalid request type: {type(request)}")
        
    return pipe_args


def load_scheduler(pipeline, scheduler):
    schedulers = {
        "dpmpp_2m": (DPMSolverMultistepScheduler, {}),
        "dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
        "dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}),
        "dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}),
        "dpmpp_sde": (DPMSolverSinglestepScheduler, {}),
        "dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
        "dpm2": (KDPM2DiscreteScheduler, {}),
        "dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
        "dpm2_a": (KDPM2AncestralDiscreteScheduler, {}),
        "dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
        "euler": (EulerDiscreteScheduler, {}),
        "euler_a": (EulerAncestralDiscreteScheduler, {}),
        "heun": (HeunDiscreteScheduler, {}),
        "lms": (LMSDiscreteScheduler, {}),
        "lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
        "deis": (DEISMultistepScheduler, {}),
        "unipc": (UniPCMultistepScheduler, {}),
        "fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
    }
    scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
    
    if scheduler_class is not None:
        scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
    else:
        raise ValueError(f"Unknown scheduler: {scheduler}")
    
    return scheduler


def load_loras(pipeline, loras, fast_generation):
    for i, lora in enumerate(loras):
        pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
    adapter_names = [f"lora_{i}" for i in range(len(loras))]
    adapter_weights = [lora['weight'] for lora in loras]
    
    if fast_generation:
        hyper_lora = hf_hub_download(
            "ByteDance/Hyper-SD",
            "Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors"
        )
        hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0
        pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora")
        adapter_names.append("hyper_lora")
        adapter_weights.append(hyper_weight)
    
    pipeline.set_adapters(adapter_names, adapter_weights)


def load_xl_embeddings(pipeline, embeddings):
    for embedding in embeddings:
        state_dict = load_file(hf_hub_download(embedding['repo_id']))
        pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)


def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
    for image in images:
        if resize_mode == "resize_only":
            image = image.resize((width, height))
        elif resize_mode == "crop_and_resize":
            image = image.crop((0, 0, width, height))
        elif resize_mode == "resize_and_fill":
            image = image.resize((width, height), Image.Resampling.LANCZOS)

    return images


def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str):
    response_images = []
    control_images = resize_images(control_images, height, width, resize_mode)
    for controlnet, image in zip(controlnets, control_images):
        if controlnet == "canny" or controlnet == "canny_xs" or controlnet == "canny_fl":
            processor = Processor('canny')
        elif controlnet == "depth" or controlnet == "depth_xs" or controlnet == "depth_fl":
            processor = Processor('depth_midas')
        elif controlnet == "pose" or controlnet == "pose_fl":
            processor = Processor('openpose_full')
        elif controlnet == "scribble":
            processor = Processor('scribble')
        else:
            raise ValueError(f"Invalid Controlnet: {controlnet}")
    
        response_images.append(processor(image, to_pil=True))
    
    return response_images


def check_image_safety(images: List[Image.Image]):
    safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
    has_nsfw_concepts = safety_checker(
        images=[images],
        clip_input=safety_checker_input.pixel_values.to("cuda"),
    )
    
    return has_nsfw_concepts[1]


def get_prompt_attention(pipeline, prompt, negative_prompt):
    if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)):
        prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt)
        return prompt_embeds, None, pooled_prompt_embeds, None
    elif isinstance(pipeline, StableDiffusionXLPipeline):
        prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt)
        return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
    else:
        raise ValueError(f"Invalid pipeline type: {type(pipeline)}")


def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str):
    image_input_ids = []
    image_id_embeds = []
    photomaker_images = resize_images(photomaker_images, height, width, resize_mode)
    
    for image in photomaker_images:
        image_input_ids.append(img)
        img = np.array(image)[:, :, ::-1]
        faces = analyze_faces(face_detector, image)
        if len(faces) > 0:
            image_id_embeds.append(torch.from_numpy(faces[0]['embeddings']))
        else:
            raise ValueError("No face detected in the image")
    
    return image_input_ids, image_id_embeds


def cleanup(pipeline, loras = None, embeddings = None):
    if loras:
        pipeline.disable_lora()
        pipeline.unload_lora_weights()
    if embeddings:
        pipeline.unload_textual_inversion()
    gc.collect()
    torch.cuda.empty_cache()


# Gen function
def gen_img(
    request: SDReq | SDImg2ImgReq | SDInpaintReq
):
    pipeline_args = get_pipe(request)
    pipeline = pipeline_args['pipeline']
    try:
        pipeline.scheduler = load_scheduler(pipeline, request.scheduler)
        
        load_loras(pipeline, request.loras, request.fast_generation)
        load_xl_embeddings(pipeline, request.embeddings)
        
        control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None
        photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None)
        
        positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt)
        
        # Common args
        args = {
            'prompt_embeds': positive_prompt_embeds,
            'pooled_prompt_embeds': positive_prompt_pooled,
            'height': request.height,
            'width': request.width,
            'num_images_per_prompt': request.num_images_per_prompt,
            'num_inference_steps': request.num_inference_steps,
            'guidance_scale': request.guidance_scale,
            'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
        }
        
        if isinstance(pipeline, any([StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline,
                                     StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline])):
            args['clip_skip'] = request.clip_skip
            args['negative_prompt_embeds'] = negative_prompt_embeds
            args['negative_pooled_prompt_embeds'] = negative_prompt_pooled
        
        if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
            args['control_mode'] = pipeline_args['control_mode']
            args['control_image'] = control_images
            args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
        
        if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
            args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
        
            if isinstance(request, SDReq):
                args['image'] = control_images
            elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)):
                args['control_image'] = control_images
        
        if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
            args['input_id_images'] = photomaker_images
            args['input_id_embeds'] = photomaker_id_embeds
            args['start_merge_step'] = 10
        
        if isinstance(request, SDImg2ImgReq):
            args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
            args['strength'] = request.strength
        elif isinstance(request, SDInpaintReq):
            args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
            args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)
            args['strength'] = request.strength
        
        images = pipeline(**args).images
        
        if request.refiner:
            images = refiner(
                prompt=request.prompt,
                num_inference_steps=40,
                denoising_start=0.7,
                image=images.images
            ).images
        
        cleanup(pipeline, request.loras, request.embeddings)
        
        return images
    except Exception as e:
        cleanup(pipeline, request.loras, request.embeddings)
        raise ValueError(f"Error generating image: {e}") from e