File size: 11,242 Bytes
70eeaf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0718992
70eeaf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import fastapi
import numpy as np
import torch
import torchaudio
from silero_vad import get_speech_timestamps, load_silero_vad
import whisperx
import edge_tts
import gc
import logging
import time
import os
from openai import AsyncOpenAI
import asyncio

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Configure FastAPI
app = fastapi.FastAPI()

# Load Silero VAD model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f'Using device: {device}')
vad_model = load_silero_vad().to(device)
logging.info('Loaded Silero VAD model')

# Load WhisperX model
whisper_model = whisperx.load_model("tiny", device, compute_type="float16")
logging.info('Loaded WhisperX model')

OPENAI_API_KEY = ""
if not OPENAI_API_KEY:
    logging.error("OpenAI API key not found. Please set the OPENAI_API_KEY environment variable.")
    raise ValueError("OpenAI API key not found.")
logging.info('Initialized OpenAI client')
aclient = AsyncOpenAI(api_key=OPENAI_API_KEY)  # Corrected import

# TTS Voice
TTS_VOICE = "en-GB-SoniaNeural"

# Function to check voice activity using Silero VAD
def check_vad(audio_data, sample_rate):
    logging.info('Checking voice activity')
    target_sample_rate = 16000
    if sample_rate != target_sample_rate:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
        audio_tensor = resampler(torch.from_numpy(audio_data))
    else:
        audio_tensor = torch.from_numpy(audio_data)
    audio_tensor = audio_tensor.to(device)

    speech_timestamps = get_speech_timestamps(audio_tensor, vad_model, sampling_rate=target_sample_rate)
    logging.info(f'Found {len(speech_timestamps)} speech timestamps')
    return len(speech_timestamps) > 0

# Async function to transcribe audio using WhisperX
def transcript_sync(audio_data, sample_rate):
    logging.info('Transcribing audio')
    target_sample_rate = 16000
    if sample_rate != target_sample_rate:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
        audio_data = resampler(torch.from_numpy(audio_data)).numpy()
    else:
        audio_data = audio_data

    batch_size = 16  # Adjust as needed
    result = whisper_model.transcribe(audio_data, batch_size=batch_size)
    text = result["segments"][0]["text"] if len(result["segments"]) > 0 else ""
    logging.info(f'Transcription result: {text}')
    del result
    gc.collect()
    if device == 'cuda':
        torch.cuda.empty_cache()
    return text

async def transcript(audio_data, sample_rate):
    loop = asyncio.get_running_loop()
    text = await loop.run_in_executor(None, transcript_sync, audio_data, sample_rate)
    return text

# Async function to get streaming response from OpenAI API
async def llm(text):
    logging.info('Getting response from OpenAI API')
    response = await aclient.chat.completions.create(model="gpt-4",  # Updated to a more recent model
    messages=[
        {"role": "system", "content": "You respond to the following transcript from the conversation that you are having with the user."},
        {"role": "user", "content": text}
    ],
    stream=True,
    temperature=0.7,
    top_p=0.9)
    async for chunk in response:
        yield chunk.choices[0].delta.content

# Async function to perform TTS using Edge-TTS
async def tts_streaming(text_stream):
    logging.info('Performing TTS')
    buffer = ""
    punctuation = {'.', '!', '?'}
    for text_chunk in text_stream:
        if text_chunk is not None:
            buffer += text_chunk
        # Check for sentence completion
        sentences = []
        start = 0
        for i, char in enumerate(buffer):
            if char in punctuation:
                sentences.append(buffer[start:i+1].strip())
                start = i+1
        buffer = buffer[start:]

        for sentence in sentences:
            if sentence:
                communicate = edge_tts.Communicate(sentence, TTS_VOICE)
                async for chunk in communicate.stream():
                    if chunk["type"] == "audio":
                        yield chunk["data"]
    # Process any remaining text
    if buffer.strip():
        communicate = edge_tts.Communicate(buffer.strip(), TTS_VOICE)
        async for chunk in communicate.stream():
            if chunk["type"] == "audio":
                yield chunk["data"]

class Conversation:
    def __init__(self):
        self.mode = 'idle'
        self.chunk_queue = []
        self.transcription = ''
        self.in_transcription = False
        self.previous_no_vad_audio = None
        self.llm_task = None
        self.transcription_task = None
        self.stop_signal = False
        self.sample_rate = 16000  # default sample rate
        self.instream = None

    async def process_audio(self, audio_chunk):
        sample_rate, audio_data = audio_chunk
        self.sample_rate = sample_rate
        audio_data = np.array(audio_data, dtype=np.float32)

        # convert to mono if necessary
        if audio_data.ndim > 1:
            audio_data = np.mean(audio_data, axis=1)

        # check for voice activity
        vad = check_vad(audio_data, sample_rate)

        if vad:
            logging.info(f'Voice activity detected in mode: {self.mode}')
            if self.mode == 'idle':
                self.mode = 'listening'
            elif self.mode == 'speaking':
                # Stop llm and tts tasks
                if self.llm_task and not self.llm_task.done():
                    logging.info('Stopping LLM and TTS tasks')
                    self.stop_signal = True
                    await self.llm_task
                self.mode = 'listening'

            if self.mode == 'listening':
                if self.previous_no_vad_audio is not None:
                    self.chunk_queue.append(self.previous_no_vad_audio)
                    self.previous_no_vad_audio = None
                # Accumulate audio chunks
                self.chunk_queue.append(audio_data)

                # Start transcription task if not already running
                if not self.in_transcription:
                    self.in_transcription = True
                    self.transcription_task = asyncio.create_task(self.transcript_loop())

        else:
            logging.info(f'No voice activity detected in mode: {self.mode}')
            if self.mode == 'listening':
                # Add the last chunk to queue
                self.chunk_queue.append(audio_data)

                # Change mode to processing
                self.mode = 'processing'

                # Wait for transcription to complete
                while self.in_transcription:
                    await asyncio.sleep(0.1)

                # Check if transcription is complete
                if len(self.chunk_queue) == 0:
                    # Start LLM and TTS tasks
                    if not self.llm_task or self.llm_task.done():
                        self.stop_signal = False
                        self.llm_task = self.llm_and_tts()
                        self.mode = 'responding'

            if self.mode == 'responding':
                async for audio_chunk in self.llm_task:
                    if self.instream is None:
                        self.instream = audio_chunk
                    else:
                        self.instream = np.concatenate((self.instream, audio_chunk))
                    # Send audio to output stream
                    yield self.instream

                # Cleanup
                self.llm_task = None
                self.transcription = ''
                self.mode = 'idle'
                self.instream = None

            # Store previous audio chunk with no voice activity
            self.previous_no_vad_audio = audio_data

    async def transcript_loop(self):
        while True:
            if len(self.chunk_queue) > 0:
                accumulated_audio = np.concatenate(self.chunk_queue)
                total_samples = len(accumulated_audio)
                total_duration = total_samples / self.sample_rate

                if total_duration > 3.0 and self.in_transcription == True:
                    first_two_seconds_samples = int(2.0 * self.sample_rate)
                    first_two_seconds_audio = accumulated_audio[:first_two_seconds_samples]
                    transcribed_text = await transcript(first_two_seconds_audio, self.sample_rate)
                    self.transcription += transcribed_text
                    remaining_audio = accumulated_audio[first_two_seconds_samples:]
                    self.chunk_queue = [remaining_audio]
                else:
                    transcribed_text = await transcript(accumulated_audio, self.sample_rate)
                    self.transcription += transcribed_text
                    self.chunk_queue = []
                    self.in_transcription = False
            else:
                await asyncio.sleep(0.1)

            if len(self.chunk_queue) == 0 and self.mode in ['idle', 'processing']:
                self.in_transcription = False
                break

    async def llm_and_tts(self):
        logging.info('Handling LLM and TTS')
        async for text_chunk in llm(self.transcription):
            if self.stop_signal:
                logging.info('LLM and TTS task stopped')
                break
            async for audio_chunk in tts_streaming([text_chunk]):
                if self.stop_signal:
                    logging.info('LLM and TTS task stopped during TTS')
                    break
                yield np.frombuffer(audio_chunk, dtype=np.int16)

@app.websocket('/ws')
async def websocket_endpoint(websocket: fastapi.WebSocket):
    await websocket.accept()
    logging.info('WebSocket connection established')
    conversation = Conversation()
    audio_buffer = []
    buffer_duration = 0.5  # 500ms
    try:
        while True:
            audio_chunk_bytes = await websocket.receive_bytes()
            if audio_chunk_bytes is None:
                break

            audio_chunk = (conversation.sample_rate, np.frombuffer(audio_chunk_bytes, dtype=np.int16))
            audio_buffer.append(audio_chunk[1])

            # Calculate the duration of the buffered audio
            total_samples = sum(len(chunk) for chunk in audio_buffer)
            total_duration = total_samples / conversation.sample_rate

            if total_duration >= buffer_duration:
                # Concatenate buffered audio chunks
                buffered_audio = np.concatenate(audio_buffer)
                audio_buffer = []  # Reset buffer

                # Process the buffered audio
                async for audio_data in conversation.process_audio((conversation.sample_rate, buffered_audio)):
                    if audio_data is not None:
                        await websocket.send_bytes(audio_data.tobytes())
    except Exception as e:
        logging.error(f'WebSocket error: {e}')
    finally:
        logging.info('WebSocket connection closed')
        await websocket.close()

@app.get('/')
def index():
    return fastapi.responses.FileResponse('index.html')

if __name__ == '__main__':
    import uvicorn
    uvicorn.run(app, host='0.0.0.0', port=8000)