File size: 7,726 Bytes
96911b6 0ed32cd 16d491d 96911b6 1cf4aa1 290ac64 375dd21 6ce4a98 96911b6 a708fda 96911b6 9200125 96911b6 3d7d31a 96911b6 89661b3 96911b6 bb3ba32 96911b6 b1adea5 4f6e76c 375dd21 96911b6 d766d8b 8edaa73 b36c45b 0ed32cd 028cea4 0ed32cd d766d8b 4bc7cb3 51319c6 1cf4aa1 51319c6 366588b 51319c6 0ed32cd 9fc9533 0ed32cd 0f36100 a708fda 4f6e76c a708fda 4ebe04e 6ce4a98 4ebe04e cedf8bf 4f6e76c 4ebe04e a708fda e1b9d08 bb3ba32 3d7d31a a708fda d766d8b a708fda a59e807 a708fda d766d8b a59e807 a708fda d766d8b a708fda bb3ba32 e1b9d08 bb3ba32 e1b9d08 bb3ba32 e1b9d08 bb3ba32 e1b9d08 3d7d31a e1b9d08 bb3ba32 e1b9d08 bb3ba32 e1b9d08 bb3ba32 e1b9d08 a708fda bb3ba32 d766d8b bb3ba32 a708fda d766d8b a708fda 4ebe04e a708fda bb3ba32 dd27210 c9150f4 e1b9d08 4bc7cb3 e1b9d08 bb3ba32 96911b6 d766d8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
from gradio_client import Client, handle_file
import seaborn as sns
import matplotlib.pyplot as plt
import os
import pandas as pd
from io import StringIO, BytesIO
import base64
import json
import plotly.io as pio
# from linePlot import plot_stacked_time_series, plot_emotion_topic_grid
# Define your Hugging Face token (make sure to set it as an environment variable)
HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable
# Initialize the Gradio Client for the specified API
client = Client("mangoesai/Elections_Comparison_Agent_V4.1", hf_token=HF_TOKEN)
# client_name = ['2016 Election','2024 Election', 'Comparison two years']
def stream_chat_with_rag(
message: str,
# history: list,
client_name: str
):
# print(f"Message: {message}")
#answer = client.predict(question=question, api_name="/run_graph")
answer, fig = client.predict(
query= message,
election_year=client_name,
api_name="/process_query"
)
# Debugging: Print the raw response
print("Raw answer from API:")
print(answer)
print("top works from API:")
print(fig)
fig_dict = json.loads(plotly_data['plot'])
# Render the figure
fig = pio.from_json(json.dumps(fig_dict))
fig.show()
return answe, fig
def heatmap(top_n):
# df = pd.read_csv('submission_emotiontopics2024GPTresult.csv')
# topics_df = gr.Dataframe(value=df, label="Data Input")
pivot_table = client.predict(
top_n= top_n,
api_name="/get_heatmap_pivot_table"
)
print(pivot_table)
print(type(pivot_table))
"""
pivot_table is a dict like:
{'headers': ['Index', 'economy', 'human rights', 'immigrant', 'politics'],
'data': [['anger', 55880.0, 557679.0, 147766.0, 180094.0],
['disgust', 26911.0, 123112.0, 64567.0, 46460.0],
['fear', 51466.0, 188898.0, 113174.0, 150578.0],
['neutral', 77005.0, 192945.0, 20549.0, 190793.0]],
'metadata': None}
"""
# transfere dictionary to df
df = pd.DataFrame(pivot_table['data'], columns=pivot_table['headers'])
df.set_index('Index', inplace=True)
plt.figure(figsize=(10, 8))
sns.heatmap(df,
cmap='YlOrRd',
cbar_kws={'label': 'Weighted Frequency'},
square=True)
plt.title(f'Top {top_n} Emotions vs Topics Weighted Frequency')
plt.xlabel('Topics')
plt.ylabel('Emotions')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
return plt.gcf()
# def decode_plot(plot_base64, top_n):
# plot_bytes = base64.b64decode(plot_base64['plot'].split(',')[1])
# img = plt.imread(BytesIO(plot_bytes), format='PNG')
# plt.figure(figsize = (12, 2*top_n), dpi = 150)
# plt.imshow(img)
# plt.axis('off')
# plt.show()
# return plt.gcf()
def linePlot(viz_type, weight, top_n):
# client = Client("mangoesai/Elections_Comparison_Agent_V4.1")
result = client.predict(
viz_type=viz_type,
weight=weight,
top_n=top_n,
api_name="/linePlot_3C1"
)
# print(result)
# result is a tuble of dictionary of (plot_base64, str), string message of description of the plot
plot_base64 = result[0]
plot_bytes = base64.b64decode(plot_base64['plot'].split(',')[1])
img = plt.imread(BytesIO(plot_bytes), format='PNG')
plt.figure(figsize = (12, 2*top_n), dpi = 150)
plt.imshow(img)
plt.axis('off')
plt.show()
return plt.gcf(), result[1]
# Create Gradio interface
with gr.Blocks(title="Reddit Election Analysis") as demo:
gr.Markdown("# Reddit Public sentiment & Social topic distribution ")
with gr.Row():
with gr.Column():
top_n = gr.Dropdown(choices=[1,2,3,4,5,6,7,8,9,10])
fresh_btn = gr.Button("Refresh Heatmap")
with gr.Column():
# with gr.Row():
output_heatmap = gr.Plot(
label="Top Public sentiment & Social topic Heatmap",
container=True, # Ensures the plot is contained within its area
elem_classes="heatmap-plot" # Add a custom class for styling
)
gr.Markdown("# Get the time series of the Public sentiment & Social topic")
with gr.Row():
with gr.Column(scale=1):
# Control panel
lineGraph_type = gr.Dropdown(choices = ['emotions', 'topics', '2Dmatrix'])
weight_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Weight (Score vs. Frequency)"
)
top_n_slider = gr.Slider(
minimum=2,
maximum=10,
value=5,
step=1,
label="Top N Items"
)
# with gr.Column():
viz_dropdown = gr.Dropdown(
choices=["emotions", "topics", "grid"],
value="emotions",
label="Visualization Type",
info="Select the type of visualization to display"
)
linePlot_btn = gr.Button("Update Visualizations")
linePlot_status_text = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=3):
time_series_fig = gr.Plot()
gr.Markdown("# Reddit Election Posts/Comments Analysis")
gr.Markdown("Ask questions about election-related comments and posts")
with gr.Row():
with gr.Column():
year_selector = gr.Radio(
choices=["2016 Election", "2024 Election", "Comparison two years"],
label="Select Election Year",
value="2016 Election"
)
query_input = gr.Textbox(
label="Your Question",
placeholder="Ask about election comments or posts..."
)
submit_btn = gr.Button("Submit")
gr.Markdown("""
## Example Questions:
- Is there any comments don't like the election results
- Summarize the main discussions about voting process
- What are the common opinions about candidates?
""")
with gr.Column():
output_text = gr.Textbox(
label="Response",
lines=20
)
gr.Markdown("## Top works of the relevant Q&A")
with gr.Row():
output_plot = gr.Plot(
label="Topic Distribution",
container=True, # Ensures the plot is contained within its area
elem_classes="topic-plot" # Add a custom class for styling
)
# Add custom CSS to ensure proper plot sizing
gr.HTML("""
<style>
.topic-plot {
min-height: 600px;
width: 100%;
margin: auto;
}
.heatmap-plot {
min-height: 400px;
width: 100%;
margin: auto;
}
</style>
""")
# topics_df = gr.Dataframe(value=df, label="Data Input")
fresh_btn.click(
fn=heatmap,
inputs=top_n,
outputs=output_heatmap
)
linePlot_btn.click(
fn = linePlot,
inputs = [viz_dropdown,weight_slider,top_n_slider],
outputs = [time_series_fig, linePlot_status_text]
)
# Update both outputs when submit is clicked
submit_btn.click(
fn=stream_chat_with_rag,
inputs=[query_input, year_selector],
outputs=output_text
)
if __name__ == "__main__":
demo.launch(share=True) |