File size: 16,570 Bytes
6c343a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import warnings
from basicsr.archs.arch_util import flow_warp
from basicsr.archs.basicvsr_arch import ConvResidualBlocks
from basicsr.archs.spynet_arch import SpyNet
from basicsr.ops.dcn import ModulatedDeformConvPack
from basicsr.utils.registry import ARCH_REGISTRY
@ARCH_REGISTRY.register()
class BasicVSRPlusPlus(nn.Module):
"""BasicVSR++ network structure.
Support either x4 upsampling or same size output. Since DCN is used in this
model, it can only be used with CUDA enabled. If CUDA is not enabled,
feature alignment will be skipped. Besides, we adopt the official DCN
implementation and the version of torch need to be higher than 1.9.
Paper:
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation
and Alignment
Args:
mid_channels (int, optional): Channel number of the intermediate
features. Default: 64.
num_blocks (int, optional): The number of residual blocks in each
propagation branch. Default: 7.
max_residue_magnitude (int): The maximum magnitude of the offset
residue (Eq. 6 in paper). Default: 10.
is_low_res_input (bool, optional): Whether the input is low-resolution
or not. If False, the output resolution is equal to the input
resolution. Default: True.
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
cpu_cache_length (int, optional): When the length of sequence is larger
than this value, the intermediate features are sent to CPU. This
saves GPU memory, but slows down the inference speed. You can
increase this number if you have a GPU with large memory.
Default: 100.
"""
def __init__(self,
mid_channels=64,
num_blocks=7,
max_residue_magnitude=10,
is_low_res_input=True,
spynet_path=None,
cpu_cache_length=100):
super().__init__()
self.mid_channels = mid_channels
self.is_low_res_input = is_low_res_input
self.cpu_cache_length = cpu_cache_length
# optical flow
self.spynet = SpyNet(spynet_path)
# feature extraction module
if is_low_res_input:
self.feat_extract = ConvResidualBlocks(3, mid_channels, 5)
else:
self.feat_extract = nn.Sequential(
nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
ConvResidualBlocks(mid_channels, mid_channels, 5))
# propagation branches
self.deform_align = nn.ModuleDict()
self.backbone = nn.ModuleDict()
modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2']
for i, module in enumerate(modules):
if torch.cuda.is_available():
self.deform_align[module] = SecondOrderDeformableAlignment(
2 * mid_channels,
mid_channels,
3,
padding=1,
deformable_groups=16,
max_residue_magnitude=max_residue_magnitude)
self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks)
# upsampling module
self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5)
self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True)
self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True)
self.pixel_shuffle = nn.PixelShuffle(2)
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
# check if the sequence is augmented by flipping
self.is_mirror_extended = False
if len(self.deform_align) > 0:
self.is_with_alignment = True
else:
self.is_with_alignment = False
warnings.warn('Deformable alignment module is not added. '
'Probably your CUDA is not configured correctly. DCN can only '
'be used with CUDA enabled. Alignment is skipped now.')
def check_if_mirror_extended(self, lqs):
"""Check whether the input is a mirror-extended sequence.
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the
(t-1-i)-th frame.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
"""
if lqs.size(1) % 2 == 0:
lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1)
if torch.norm(lqs_1 - lqs_2.flip(1)) == 0:
self.is_mirror_extended = True
def compute_flow(self, lqs):
"""Compute optical flow using SPyNet for feature alignment.
Note that if the input is an mirror-extended sequence, 'flows_forward'
is not needed, since it is equal to 'flows_backward.flip(1)'.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
Return:
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the
flows used for forward-time propagation (current to previous).
'flows_backward' corresponds to the flows used for
backward-time propagation (current to next).
"""
n, t, c, h, w = lqs.size()
lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w)
lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w)
flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w)
if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
flows_forward = flows_backward.flip(1)
else:
flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w)
if self.cpu_cache:
flows_backward = flows_backward.cpu()
flows_forward = flows_forward.cpu()
return flows_forward, flows_backward
def propagate(self, feats, flows, module_name):
"""Propagate the latent features throughout the sequence.
Args:
feats dict(list[tensor]): Features from previous branches. Each
component is a list of tensors with shape (n, c, h, w).
flows (tensor): Optical flows with shape (n, t - 1, 2, h, w).
module_name (str): The name of the propgation branches. Can either
be 'backward_1', 'forward_1', 'backward_2', 'forward_2'.
Return:
dict(list[tensor]): A dictionary containing all the propagated
features. Each key in the dictionary corresponds to a
propagation branch, which is represented by a list of tensors.
"""
n, t, _, h, w = flows.size()
frame_idx = range(0, t + 1)
flow_idx = range(-1, t)
mapping_idx = list(range(0, len(feats['spatial'])))
mapping_idx += mapping_idx[::-1]
if 'backward' in module_name:
frame_idx = frame_idx[::-1]
flow_idx = frame_idx
feat_prop = flows.new_zeros(n, self.mid_channels, h, w)
for i, idx in enumerate(frame_idx):
feat_current = feats['spatial'][mapping_idx[idx]]
if self.cpu_cache:
feat_current = feat_current.cuda()
feat_prop = feat_prop.cuda()
# second-order deformable alignment
if i > 0 and self.is_with_alignment:
flow_n1 = flows[:, flow_idx[i], :, :, :]
if self.cpu_cache:
flow_n1 = flow_n1.cuda()
cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))
# initialize second-order features
feat_n2 = torch.zeros_like(feat_prop)
flow_n2 = torch.zeros_like(flow_n1)
cond_n2 = torch.zeros_like(cond_n1)
if i > 1: # second-order features
feat_n2 = feats[module_name][-2]
if self.cpu_cache:
feat_n2 = feat_n2.cuda()
flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
if self.cpu_cache:
flow_n2 = flow_n2.cuda()
flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))
cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1))
# flow-guided deformable convolution
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2)
# concatenate and residual blocks
feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop]
if self.cpu_cache:
feat = [f.cuda() for f in feat]
feat = torch.cat(feat, dim=1)
feat_prop = feat_prop + self.backbone[module_name](feat)
feats[module_name].append(feat_prop)
if self.cpu_cache:
feats[module_name][-1] = feats[module_name][-1].cpu()
torch.cuda.empty_cache()
if 'backward' in module_name:
feats[module_name] = feats[module_name][::-1]
return feats
def upsample(self, lqs, feats):
"""Compute the output image given the features.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
feats (dict): The features from the propgation branches.
Returns:
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
"""
outputs = []
num_outputs = len(feats['spatial'])
mapping_idx = list(range(0, num_outputs))
mapping_idx += mapping_idx[::-1]
for i in range(0, lqs.size(1)):
hr = [feats[k].pop(0) for k in feats if k != 'spatial']
hr.insert(0, feats['spatial'][mapping_idx[i]])
hr = torch.cat(hr, dim=1)
if self.cpu_cache:
hr = hr.cuda()
hr = self.reconstruction(hr)
hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr)))
hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr)))
hr = self.lrelu(self.conv_hr(hr))
hr = self.conv_last(hr)
if self.is_low_res_input:
hr += self.img_upsample(lqs[:, i, :, :, :])
else:
hr += lqs[:, i, :, :, :]
if self.cpu_cache:
hr = hr.cpu()
torch.cuda.empty_cache()
outputs.append(hr)
return torch.stack(outputs, dim=1)
def forward(self, lqs):
"""Forward function for BasicVSR++.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
Returns:
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
"""
n, t, c, h, w = lqs.size()
# whether to cache the features in CPU
self.cpu_cache = True if t > self.cpu_cache_length else False
if self.is_low_res_input:
lqs_downsample = lqs.clone()
else:
lqs_downsample = F.interpolate(
lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4)
# check whether the input is an extended sequence
self.check_if_mirror_extended(lqs)
feats = {}
# compute spatial features
if self.cpu_cache:
feats['spatial'] = []
for i in range(0, t):
feat = self.feat_extract(lqs[:, i, :, :, :]).cpu()
feats['spatial'].append(feat)
torch.cuda.empty_cache()
else:
feats_ = self.feat_extract(lqs.view(-1, c, h, w))
h, w = feats_.shape[2:]
feats_ = feats_.view(n, t, -1, h, w)
feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)]
# compute optical flow using the low-res inputs
assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, (
'The height and width of low-res inputs must be at least 64, '
f'but got {h} and {w}.')
flows_forward, flows_backward = self.compute_flow(lqs_downsample)
# feature propgation
for iter_ in [1, 2]:
for direction in ['backward', 'forward']:
module = f'{direction}_{iter_}'
feats[module] = []
if direction == 'backward':
flows = flows_backward
elif flows_forward is not None:
flows = flows_forward
else:
flows = flows_backward.flip(1)
feats = self.propagate(feats, flows, module)
if self.cpu_cache:
del flows
torch.cuda.empty_cache()
return self.upsample(lqs, feats)
class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
"""Second-order deformable alignment module.
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int or tuple[int]): Same as nn.Conv2d.
padding (int or tuple[int]): Same as nn.Conv2d.
dilation (int or tuple[int]): Same as nn.Conv2d.
groups (int): Same as nn.Conv2d.
bias (bool or str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
False.
max_residue_magnitude (int): The maximum magnitude of the offset
residue (Eq. 6 in paper). Default: 10.
"""
def __init__(self, *args, **kwargs):
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
self.conv_offset = nn.Sequential(
nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
)
self.init_offset()
def init_offset(self):
def _constant_init(module, val, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
_constant_init(self.conv_offset[-1], val=0, bias=0)
def forward(self, x, extra_feat, flow_1, flow_2):
extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
out = self.conv_offset(extra_feat)
o1, o2, mask = torch.chunk(out, 3, dim=1)
# offset
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
offset = torch.cat([offset_1, offset_2], dim=1)
# mask
mask = torch.sigmoid(mask)
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
self.dilation, mask)
# if __name__ == '__main__':
# spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth'
# model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda()
# input = torch.rand(1, 2, 3, 64, 64).cuda()
# output = model(input)
# print('===================')
# print(output.shape)
|