File size: 9,417 Bytes
9eada9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
"""yieldpredictionrandomforest.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1-bKSlitmr01NPLLG_ZrTBoZ-3hCHjwM6
"""

import pandas as pd
import pickle
import numpy as np
import requests
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error

# Load the dataset
crop_data = pd.read_csv('combined_data.csv')

# Convert district names to title case
crop_data['District'] = crop_data['District'].str.title()

# Function to fetch humidity and temperature from a weather API
def get_weather_data(district):
    api_key = '2146dd5e46379bba1811371d760fbf18'  # Replace 'YOUR_API_KEY' with your actual API key
    base_url = 'http://api.openweathermap.org/data/2.5/weather?'

    # Build API request URL
    complete_url = base_url + 'q=' + district + '&appid=' + api_key

    # Send GET request to the API
    response = requests.get(complete_url)

    # Parse response data
    if response.status_code == 200:
        data = response.json()
        # Extract humidity and temperature
        humidity = data['main']['humidity']
        temperature = data['main']['temp'] - 273.15  # Convert from Kelvin to Celsius
        return humidity, temperature
    else:
        print("Failed to fetch weather data. Please try again later.")
        return None, None

# Function to calculate average rainfall for a given state
def calculate_average_rainfall(state):
    # Define ranges for average rainfall for each state (in cm)
    state_rainfall_ranges = {
        'Rajasthan': (5, 20),
        'Manipur': (100, 300),
        'Madhya Pradesh': (70, 150),
        'Puducherry': (80, 200),
        'Bihar': (80, 180),
        'Andhra Pradesh': (80, 150),
        'Chhattisgarh': (100, 200),
        'Uttar Pradesh': (70, 150),
        'Andaman and Nicobar Islands': (150, 300),
        'Telangana': (70, 150),
        'Karnataka': (70, 150),
        'Gujarat': (40, 100),
        'Dadra and Nagar Haveli': (100, 200),
        'Meghalaya': (200, 400),
        'Tamil Nadu': (70, 150),
        'Maharashtra': (70, 150),
        'Kerala': (200, 400),
        'Assam': (200, 400),
        'Goa': (200, 400),
        'Mizoram': (200, 400),
        'West Bengal': (200, 400),
        'Jammu and Kashmir': (30, 80),
        'Himachal Pradesh': (50, 120),
        'Haryana': (40, 100),
        'Odisha': (100, 200),
        'Delhi': (30, 80),
        'Nagaland': (200, 400),
        'Tripura': (200, 400),
        'Punjab': (30, 80),
        'Uttarakhand': (100, 200),
        'Arunachal Pradesh': (200, 400),
        'Jharkhand': (100, 200),
        'Chandigarh': (30, 80),
        'Sikkim': (200, 400),
        'Daman and Diu': (100, 200)
    }

    # Get the range for the given state
    rainfall_range = state_rainfall_ranges.get(state)
    if rainfall_range:
        # Calculate average rainfall within the range for the state
        average_rainfall = np.random.uniform(rainfall_range[0], rainfall_range[1])
        return average_rainfall
    else:
        print(f"Average rainfall data not available for {state}.")
        return None

def recommend_top_n_crops(state, district, soil_type, season,Area, n=3):
    # Fetch average rainfall for the given state
    avg_rainfall = calculate_average_rainfall(state)

    if avg_rainfall is not None:
        # Fetch humidity and temperature for the given district
        humidity, temperature = get_weather_data(district)

        if humidity is not None and temperature is not None:
            # Assuming random values for N, P, and K based on soil type
            np.random.seed(42)  # for reproducibility
            random_n = np.random.uniform(0.1, 0.5)
            random_p = np.random.uniform(0.01, 0.05)
            random_k = np.random.uniform(0.2, 0.4)

            # Map input strings to their encoded values
            state_encoded = state_encodings[state]
            district_encoded = district_encodings[district]
            soil_type_encoded = soil_type_encodings[soil_type]
            season_encoded = season_type_encodings[season]

            # Prepare input features for prediction
            input_features = np.array([[state_encoded, district_encoded, soil_type_encoded, avg_rainfall, temperature, humidity, random_n, random_p, random_k, season_encoded, 0, 0]])

            # Make prediction using the trained model
            predicted_probs = model.predict_proba(input_features)[0]

            # Sort predicted probabilities and get top N indices
            top_n_indices = np.argsort(predicted_probs)[::-1][:n]

            # Get top N crop recommendations
            top_n_crops = [crop_encodings_inverse[idx] for idx in top_n_indices]

            # return top_n_crops

            def yeild_pred(state_encoded,district_encoded,soil_type_encoded,crop,avg_rainfall, temperature, humidity, random_n, random_p, random_k, season_encoded,Area):
               crop_encoded=crop_type_encodings[crop]
               input_features1= np.array([[state_encoded,district_encoded,soil_type_encoded,crop_encoded,avg_rainfall, temperature, humidity, random_n, random_p, random_k, season_encoded,Area]])
               pred_yield=model_rf.predict(input_features1)
               print(pred_yield)

            for crop in top_n_crops:
              print(crop)
              yeild_pred(state_encoded,district_encoded,soil_type_encoded,crop,avg_rainfall, temperature, humidity, random_n, random_p, random_k, season_encoded,Area)

        else:
            print("Failed to fetch weather data. Please try again later.")
            return None
    else:
        print("Failed to fetch average rainfall data. Please try again later.")
        return None

label_encoder = LabelEncoder()
crop_data['State_Encoded'] = label_encoder.fit_transform(crop_data['State'])
crop_data['District_Encoded'] = label_encoder.fit_transform(crop_data['District'])
crop_data['Soil_Type_Encoded'] = label_encoder.fit_transform(crop_data['Soil Type'])
crop_data['Crop_Type_Encoded'] = label_encoder.fit_transform(crop_data['Crop'])
crop_data['Season_Encoded'] = label_encoder.fit_transform(crop_data['Season'])

# Create dictionaries to map original names to encoded labels
state_encodings = dict(zip(crop_data['State'], crop_data['State_Encoded']))
district_encodings = dict(zip(crop_data['District'], crop_data['District_Encoded']))
soil_type_encodings = dict(zip(crop_data['Soil Type'], crop_data['Soil_Type_Encoded']))
season_type_encodings = dict(zip(crop_data['Season'], crop_data['Season_Encoded']))
crop_type_encodings = dict(zip(crop_data['Crop'], crop_data['Crop_Type_Encoded']))
crop_encodings_inverse = dict(zip(crop_data['Crop_Type_Encoded'], crop_data['Crop']))

# Split data into features and target
X = crop_data[['State_Encoded', 'District_Encoded', 'Soil_Type_Encoded', 'Rainfall (cm)', 'Temperature (°C)', 'Humidity (%)', 'N', 'P', 'K', 'Season_Encoded', 'Production', 'Yield']]
y = crop_data['Crop_Type_Encoded']
# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train Random Forest model with fine-tuned hyperparameters
model = RandomForestClassifier(n_estimators=200, max_depth=20, min_samples_split=5, min_samples_leaf=2, random_state=42)
model.fit(X_train, y_train)
with open('crop_recommendation_model.pkl', 'wb') as file:
    pickle.dump(model, file)

# Test the model
test_accuracy = model.score(X_test, y_test)
print("Test Accuracy:", test_accuracy)

# Evaluate the model with additional measures
y_pred = model.predict(X_test)
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)
print(classification_report(y_test, y_pred))



# Split data into features and target
X1 = crop_data[['State_Encoded', 'District_Encoded', 'Soil_Type_Encoded','Crop_Type_Encoded', 'Rainfall (cm)', 'Temperature (°C)', 'Humidity (%)', 'N', 'P', 'K', 'Season_Encoded','Area']]
y1 = crop_data['Yield']

# Split data into training and testing sets
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.2, random_state=42)

# Train RandomForestRegressor model
model_rf = RandomForestRegressor(n_estimators=200, max_depth=20, min_samples_split=5, min_samples_leaf=2, random_state=42)
model_rf.fit(X1_train, y1_train)
with open('yield_pred.pkl', 'wb') as file:
    pickle.dump(model_rf, file)

# Predict yield for the testing data
y1_pred = model_rf.predict(X1_test)

# Evaluate the model
mse = mean_squared_error(y1_test, y1_pred)
r2 = r2_score(y1_test, y1_pred)
test_accuracy1 = model_rf.score(X1_test, y1_test)
print("Mean Squared Error:", mse)
print("R-squared Score:", r2)
print("Test Accuracy:", test_accuracy1)


# Make predictions
# y_pred = model1.predict(X_test)


# Example usage:

state = 'Rajasthan'
district = 'Kota'
soil_type = 'Alluvial'
season = 'Whole Year'
Area=1

top_3_crops = recommend_top_n_crops(state, district, soil_type, season,Area, n=3)
print('Top 3 Recommended Crops:', top_3_crops)