Spaces:
Sleeping
Sleeping
File size: 15,358 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 52,
"id": "b56a950c-db41-4575-bef9-0fa651dea363",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"import json\n",
"import ollama\n",
"from typing import List\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display,clear_output\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ec875db-0f6a-4eec-a3b6-eae4b71a4b89",
"metadata": {},
"outputs": [],
"source": [
"# Constants\n",
"\n",
"MODEL = \"llama3.2\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "227cd07c-98a4-463b-94ad-94e33d04944b",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
" \"\"\"\n",
" A utility class to represent a Website that we have scraped, now with links\n",
" \"\"\"\n",
"\n",
" def __init__(self, url):\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" self.body = response.content\n",
" soup = BeautifulSoup(self.body, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" if soup.body:\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
" else:\n",
" self.text = \"\"\n",
" links = [link.get('href') for link in soup.find_all('a')]\n",
" self.links = [link for link in links if link]\n",
"\n",
" def get_contents(self):\n",
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d5c5e40-c010-4102-8359-899f988185fb",
"metadata": {},
"outputs": [],
"source": [
"ed = Website(\"https://edwarddonner.com\")\n",
"ed.links"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f0b5d71-487c-47a5-ace6-8e02465ed452",
"metadata": {},
"outputs": [],
"source": [
"link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n",
"You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
"such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
"link_system_prompt += \"You should respond in JSON as in this example:\"\n",
"link_system_prompt += \"\"\"\n",
"{\n",
" \"links\": [\n",
" {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
" {\"type\": \"careers page\": \"url\": \"https://another.full.url/careers\"}\n",
" ]\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6550325-5160-42c9-b7e7-980b504cd096",
"metadata": {},
"outputs": [],
"source": [
"print(link_system_prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2db4ccc6-5c35-4775-a5b2-4b86e4c73808",
"metadata": {},
"outputs": [],
"source": [
"def get_links_user_prompt(website):\n",
" user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
" user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
"Do not include Terms of Service, Privacy, email links.\\n\"\n",
" user_prompt += \"Links (some might be relative links):\\n\"\n",
" user_prompt += \"\\n\".join(website.links)\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8af511c7-5a74-4d1a-b763-b31370e70cff",
"metadata": {},
"outputs": [],
"source": [
"print(get_links_user_prompt(ed))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3b7fb61-ca15-4eab-b017-b0fe5cce46fd",
"metadata": {},
"outputs": [],
"source": [
"def get_links(url):\n",
" website = Website(url)\n",
" response = ollama.chat(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": link_system_prompt},\n",
" {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
" ], format = \"json\" #Define format as json!\n",
" )\n",
" result = response['message']['content']\n",
"\n",
" return json.loads(result)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7816d393-620d-4c53-913e-4ec130b2baba",
"metadata": {},
"outputs": [],
"source": [
"# Anthropic has made their site harder to scrape, so I'm using HuggingFace..\n",
"\n",
"anthropic = Website(\"https://anthropic.com\")\n",
"anthropic.links"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f32ceccb-1d45-41a3-a5c1-fb2e6cd76afe",
"metadata": {},
"outputs": [],
"source": [
"get_links(\"https://anthropic.com\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7ec4727-e897-473c-a657-e74f6999c974",
"metadata": {},
"outputs": [],
"source": [
"def get_all_details(url):\n",
" result = \"Landing page:\\n\"\n",
" result += Website(url).get_contents()\n",
" links = get_links(url)\n",
" print(\"Found links:\", links)\n",
" for link in links[\"links\"]:\n",
" result += f\"\\n\\n{link['type']}\\n\"\n",
" result += Website(link[\"url\"]).get_contents()\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7acde0c5-1af2-4e8e-9303-e2a98ec9cdbb",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"print(get_all_details(\"https://anthropic.com\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a2e2b1d-eb55-4bfb-bf55-5e8c87db0d96",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
"and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
"Include details of company culture, customers and careers/jobs if you have the information.\"\n",
"\n",
"# Or uncomment the lines below for a more humorous brochure - this demonstrates how easy it is to incorporate 'tone':\n",
"\n",
"# system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
"# and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
"# Include details of company culture, customers and careers/jobs if you have the information.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8eac1719-7f94-4460-bc4a-0c9c93bb17a5",
"metadata": {},
"outputs": [],
"source": [
"def get_brochure_user_prompt(company_name, url):\n",
" user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
" user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
" user_prompt += get_all_details(url)\n",
" user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2e312f6-01c5-4e57-9134-fb4aa447d155",
"metadata": {},
"outputs": [],
"source": [
"get_brochure_user_prompt(\"Anthropic\", \"https://anthropic.com\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b05cbab-f0d2-4a9e-8b8c-c868a036e9cd",
"metadata": {},
"outputs": [],
"source": [
"def create_brochure(company_name, url):\n",
" response = ollama.chat(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
" ]\n",
" )\n",
" result = response[\"message\"][\"content\"]\n",
" display(Markdown(result))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91ede0c0-daf2-42ef-9d31-749afb9d5352",
"metadata": {},
"outputs": [],
"source": [
"create_brochure(\"Anthropic\", \"https://anthropic.com\")"
]
},
{
"cell_type": "markdown",
"id": "afb4aeee-5108-42a7-a1c1-5bad254b7e8b",
"metadata": {},
"source": [
"# Final omprovement\n",
"\n",
"getting a typewriter animation"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "177de611-1cb1-49e2-b7ea-8d01191af3ee",
"metadata": {},
"outputs": [],
"source": [
"def create_brochure(company_name, url):\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
" ]\n",
"\n",
" display_markdown = display(Markdown(\"\"), display_id=True) # Initialize Markdown display\n",
" response_text = \"\"\n",
"\n",
" for chunk in ollama.chat(model=MODEL, messages=messages, stream=True): # Ensure stream=True (not a string)\n",
" response_text += chunk['message']['content']\n",
" clear_output(wait=True) # Clear previous output to create a streaming effect\n",
" display_markdown.update(Markdown(response_text)) # Update Markdown dynamically\n"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "a1971d81-fc7f-4ed1-97a0-7ef5e8ed332a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found links: {'links': [{'type': 'About page', 'url': 'https://www.anthropic.com/company'}, {'type': 'Careers page', 'url': 'https://www.anthropic.com/careers'}, {'type': 'Company page', 'url': 'https://www.anthropic.com/'}, {'type': 'Research page', 'url': 'https://www.anthropic.com/research'}, {'type': 'Twitter profile', 'url': 'https://twitter.com/AnthropicAI'}, {'type': 'LinkedIn company page', 'url': 'https://www.linkedin.com/company/anthropicresearch'}, {'type': 'YouTube channel', 'url': 'https://www.youtube.com/@anthropic-ai'}]}\n"
]
},
{
"data": {
"text/markdown": [
"**Anthropic Brochure**\n",
"======================\n",
"\n",
"**Mission Statement**\n",
"-------------------\n",
"\n",
"Anthropic is an AI safety and research company dedicated to building reliable, interpretable, and steerable AI systems that benefit humanity in the long run.\n",
"\n",
"**Company Overview**\n",
"--------------------\n",
"\n",
"Anthropic is headquartered in San Francisco and brings together a diverse team of researchers, engineers, policy experts, and business leaders with experience spanning various disciplines. Our mission is to conduct frontier AI research, develop and apply safety techniques, and deploy the resulting systems via partnerships and products.\n",
"\n",
"**Research Focus**\n",
"-----------------\n",
"\n",
"Anthropic conducts cutting-edge AI research across various modalities, exploring novel and emerging safety research areas such as interpretability, RL from human feedback, policy, and societal impacts analysis. Our research aims to advance the field of AI safety and inform our product development.\n",
"\n",
"**Product Portfolio**\n",
"---------------------\n",
"\n",
"Our flagship product is Claude, a highly intelligent AI model that enables customers to build custom applications and experiences using our API. We also offer various enterprise solutions, including Claude for Enterprise, designed to meet the needs of large organizations.\n",
"\n",
"**Customer Base**\n",
"-----------------\n",
"\n",
"Anthropic serves a diverse range of customers, including businesses, nonprofits, civil society groups, and their clients around the globe. Our commitment to safety and reliability has earned us a reputation as a trusted partner in the AI industry.\n",
"\n",
"**Values and Culture**\n",
"----------------------\n",
"\n",
"At Anthropic, we value:\n",
"\n",
"* **Acting for the global good**: We strive to make decisions that maximize positive outcomes for humanity in the long run.\n",
"* **Holding light and shade**: We acknowledge the potential risks of AI and approach our work with caution and transparency.\n",
"\n",
"**Join Our Team**\n",
"-----------------\n",
"\n",
"We're a collaborative team of researchers, engineers, policy experts, and business leaders passionate about building safer AI systems. Join us to be part of this exciting journey and contribute your skills and expertise to shaping the future of AI.\n",
"\n",
"**Careers**\n",
"------------\n",
"\n",
"Check our website for open roles and learn more about our company culture, benefits, and career opportunities.\n",
"\n",
"[Learn More](link)\n",
"\n",
"**Get in Touch**\n",
"-----------------\n",
"\n",
"Stay up-to-date with the latest news and announcements from Anthropic. Follow us on Twitter, LinkedIn, or YouTube to join the conversation and stay informed.\n",
"\n",
"[Twitter](link)\n",
"[LinkedIn](link)\n",
"[YouTube](link)"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"create_brochure(\"Anthropic\", \"https://anthropic.com\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c33277a4-84f1-447c-a66e-eb7e2af42d2a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|