Spaces:
Sleeping
Sleeping
File size: 29,284 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
# tickers is a list of stock tickers
import tickers
# prices is a dict; the key is a ticker and the value is a list of historic prices, today first
import prices
# Trade represents a decision to buy or sell a quantity of a ticker
import Trade
import random
import numpy as np
def trade2():
# Buy if the current price is lower than the average of the last 5 days
trades = []
for ticker in tickers:
if prices[ticker][0] < np.mean(prices[ticker][1:6]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade3():
# Sell if the current price is higher than the average of the last 10 days
trades = []
for ticker in tickers:
if prices[ticker][0] > np.mean(prices[ticker][1:11]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade4():
# Buy if the current price is the lowest in the last 3 days
trades = []
for ticker in tickers:
if prices[ticker][0] == min(prices[ticker][:3]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade5():
# Sell if the current price is the highest in the last 3 days
trades = []
for ticker in tickers:
if prices[ticker][0] == max(prices[ticker][:3]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade6():
# Buy if the current price is higher than the previous day's price
trades = []
for ticker in tickers:
if prices[ticker][0] > prices[ticker][1]:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade7():
# Sell if the current price is lower than the previous day's price
trades = []
for ticker in tickers:
if prices[ticker][0] < prices[ticker][1]:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade8():
# Buy if the current price is higher than the average of the last 20 days
trades = []
for ticker in tickers:
if prices[ticker][0] > np.mean(prices[ticker][1:21]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade9():
# Sell if the current price is lower than the average of the last 20 days
trades = []
for ticker in tickers:
if prices[ticker][0] < np.mean(prices[ticker][1:21]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade10():
# Buy if the current price is higher than the highest price in the last 5 days
trades = []
for ticker in tickers:
if prices[ticker][0] > max(prices[ticker][1:6]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade11():
# Sell if the current price is lower than the lowest price in the last 5 days
trades = []
for ticker in tickers:
if prices[ticker][0] < min(prices[ticker][1:6]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade12():
# Long/Short: Buy the best-performing stock and sell the worst-performing stock in the last 10 days
best_ticker = max(tickers, key=lambda x: (prices[x][0] - prices[x][9]) / prices[x][9])
worst_ticker = min(tickers, key=lambda x: (prices[x][0] - prices[x][9]) / prices[x][9])
return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]
def trade13():
# Buy if the 5-day moving average crosses above the 20-day moving average
trades = []
for ticker in tickers:
if np.mean(prices[ticker][:5]) > np.mean(prices[ticker][:20]) and np.mean(prices[ticker][1:6]) <= np.mean(prices[ticker][1:21]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade14():
# Sell if the 5-day moving average crosses below the 20-day moving average
trades = []
for ticker in tickers:
if np.mean(prices[ticker][:5]) < np.mean(prices[ticker][:20]) and np.mean(prices[ticker][1:6]) >= np.mean(prices[ticker][1:21]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade15():
# Buy if the current volume is higher than the average volume of the last 10 days
trades = []
for ticker in tickers:
if volumes[ticker][0] > np.mean(volumes[ticker][1:11]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade16():
# Sell if the current volume is lower than the average volume of the last 10 days
trades = []
for ticker in tickers:
if volumes[ticker][0] < np.mean(volumes[ticker][1:11]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade17():
# Long/Short: Buy the stock with the highest relative strength index (RSI) and sell the stock with the lowest RSI
rsi = {}
for ticker in tickers:
gains = [max(prices[ticker][i] - prices[ticker][i+1], 0) for i in range(13)]
losses = [max(prices[ticker][i+1] - prices[ticker][i], 0) for i in range(13)]
avg_gain = sum(gains) / 14
avg_loss = sum(losses) / 14
rs = avg_gain / avg_loss if avg_loss > 0 else 100
rsi[ticker] = 100 - (100 / (1 + rs))
best_ticker = max(tickers, key=lambda x: rsi[x])
worst_ticker = min(tickers, key=lambda x: rsi[x])
return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]
def trade18():
# Buy if the current price is higher than the 50-day moving average and the 50-day moving average is higher than the 200-day moving average
trades = []
for ticker in tickers:
if prices[ticker][0] > np.mean(prices[ticker][:50]) > np.mean(prices[ticker][:200]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade19():
# Sell if the current price is lower than the 50-day moving average and the 50-day moving average is lower than the 200-day moving average
trades = []
for ticker in tickers:
if prices[ticker][0] < np.mean(prices[ticker][:50]) < np.mean(prices[ticker][:200]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade20():
# Long/Short: Buy the stock with the highest momentum and sell the stock with the lowest momentum
momentums = {}
for ticker in tickers:
momentums[ticker] = prices[ticker][0] - prices[ticker][19]
best_ticker = max(tickers, key=lambda x: momentums[x])
worst_ticker = min(tickers, key=lambda x: momentums[x])
return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]
def trade21():
# Buy if the current price is higher than the upper Bollinger Band
trades = []
for ticker in tickers:
sma = np.mean(prices[ticker][:20])
std = np.std(prices[ticker][:20])
upper_band = sma + 2 * std
if prices[ticker][0] > upper_band:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade22():
# Sell if the current price is lower than the lower Bollinger Band
trades = []
for ticker in tickers:
sma = np.mean(prices[ticker][:20])
std = np.std(prices[ticker][:20])
lower_band = sma - 2 * std
if prices[ticker][0] < lower_band:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade23():
# Buy if the current volatility is higher than the average volatility of the last 10 days
trades = []
for ticker in tickers:
volatility = np.std(prices[ticker][:10])
avg_volatility = np.mean([np.std(prices[ticker][i:i+10]) for i in range(10)])
if volatility > avg_volatility:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade24():
# Sell if the current volatility is lower than the average volatility of the last 10 days
trades = []
for ticker in tickers:
volatility = np.std(prices[ticker][:10])
avg_volatility = np.mean([np.std(prices[ticker][i:i+10]) for i in range(10)])
if volatility < avg_volatility:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade25():
# Long/Short: Buy the stock with the lowest volatility and sell the stock with the highest volatility
volatilities = {}
for ticker in tickers:
volatilities[ticker] = np.std(prices[ticker][:10])
best_ticker = min(tickers, key=lambda x: volatilities[x])
worst_ticker = max(tickers, key=lambda x: volatilities[x])
return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]
def trade26():
# Buy if the current price is higher than the 20-day exponential moving average (EMA)
trades = []
for ticker in tickers:
ema = prices[ticker][0]
multiplier = 2 / (20 + 1)
for i in range(1, 20):
ema = (prices[ticker][i] - ema) * multiplier + ema
if prices[ticker][0] > ema:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade27():
# Sell if the current price is lower than the 20-day exponential moving average (EMA)
trades = []
for ticker in tickers:
ema = prices[ticker][0]
multiplier = 2 / (20 + 1)
for i in range(1, 20):
ema = (prices[ticker][i] - ema) * multiplier + ema
if prices[ticker][0] < ema:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade28():
# Buy if the current price is higher than the upper Keltner Channel
trades = []
for ticker in tickers:
ema = prices[ticker][0]
multiplier = 2 / (20 + 1)
for i in range(1, 20):
ema = (prices[ticker][i] - ema) * multiplier + ema
atr = np.mean([np.max(prices[ticker][i:i+10]) - np.min(prices[ticker][i:i+10]) for i in range(10)])
upper_channel = ema + 2 * atr
if prices[ticker][0] > upper_channel:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade29():
# Sell if the current price is lower than the lower Keltner Channel
trades = []
for ticker in tickers:
ema = prices[ticker][0]
multiplier = 2 / (20 + 1)
for i in range(1, 20):
ema = (prices[ticker][i] - ema) * multiplier + ema
atr = np.mean([np.max(prices[ticker][i:i+10]) - np.min(prices[ticker][i:i+10]) for i in range(10)])
lower_channel = ema - 2 * atr
if prices[ticker][0] < lower_channel:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade30():
# Long/Short: Buy the stock with the highest Sharpe ratio and sell the stock with the lowest Sharpe ratio
sharpe_ratios = {}
for ticker in tickers:
returns = [prices[ticker][i] / prices[ticker][i+1] - 1 for i in range(19)]
sharpe_ratios[ticker] = np.mean(returns) / np.std(returns)
best_ticker = max(tickers, key=lambda x: sharpe_ratios[x])
worst_ticker = min(tickers, key=lambda x: sharpe_ratios[x])
return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]
def trade31():
# Buy if the current price is higher than the Ichimoku Cloud conversion line
trades = []
for ticker in tickers:
conversion_line = (np.max(prices[ticker][:9]) + np.min(prices[ticker][:9])) / 2
if prices[ticker][0] > conversion_line:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade32():
# Buy if the current price is higher than the price 5 days ago
trades = []
for ticker in tickers:
if prices[ticker][0] > prices[ticker][4]:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade33():
# Sell if the current price is lower than the price 5 days ago
trades = []
for ticker in tickers:
if prices[ticker][0] < prices[ticker][4]:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade34():
# Buy if the current price is the highest in the last 15 days
trades = []
for ticker in tickers:
if prices[ticker][0] == max(prices[ticker][:15]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade35():
# Sell if the current price is the lowest in the last 15 days
trades = []
for ticker in tickers:
if prices[ticker][0] == min(prices[ticker][:15]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade36():
# Buy if the current price is higher than the 10-day simple moving average (SMA)
trades = []
for ticker in tickers:
sma = np.mean(prices[ticker][:10])
if prices[ticker][0] > sma:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade37():
# Sell if the current price is lower than the 10-day simple moving average (SMA)
trades = []
for ticker in tickers:
sma = np.mean(prices[ticker][:10])
if prices[ticker][0] < sma:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade38():
# Buy if the current price is higher than the highest price in the last 20 days
trades = []
for ticker in tickers:
if prices[ticker][0] > max(prices[ticker][:20]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade39():
# Sell if the current price is lower than the lowest price in the last 20 days
trades = []
for ticker in tickers:
if prices[ticker][0] < min(prices[ticker][:20]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade40():
# Buy if the current price is higher than the 50-day SMA
trades = []
for ticker in tickers:
sma = np.mean(prices[ticker][:50])
if prices[ticker][0] > sma:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade41():
# Sell if the current price is lower than the 50-day SMA
trades = []
for ticker in tickers:
sma = np.mean(prices[ticker][:50])
if prices[ticker][0] < sma:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade42():
# Buy if the current price is higher than the previous 2 days (a simple uptrend)
trades = []
for ticker in tickers:
if prices[ticker][0] > prices[ticker][1] > prices[ticker][2]:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade43():
# Sell if the current price is lower than the previous 2 days (a simple downtrend)
trades = []
for ticker in tickers:
if prices[ticker][0] < prices[ticker][1] < prices[ticker][2]:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade44():
# Buy if the current price is higher than the previous day's high (a breakout)
trades = []
for ticker in tickers:
if prices[ticker][0] > max(prices[ticker][1:2]):
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade45():
# Sell if the current price is lower than the previous day's low (a breakdown)
trades = []
for ticker in tickers:
if prices[ticker][0] < min(prices[ticker][1:2]):
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade46():
# Buy if the current price is above the previous day's high and the previous day was a down day (a potential reversal)
trades = []
for ticker in tickers:
if prices[ticker][0] > max(prices[ticker][1:2]) and prices[ticker][1] < prices[ticker][2]:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade47():
# Sell if the current price is below the previous day's low and the previous day was an up day (a potential reversal)
trades = []
for ticker in tickers:
if prices[ticker][0] < min(prices[ticker][1:2]) and prices[ticker][1] > prices[ticker][2]:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade48():
# Buy if the current price is above the 5-day SMA and the 5-day SMA is above the 10-day SMA (a bullish crossover)
trades = []
for ticker in tickers:
sma5 = np.mean(prices[ticker][:5])
sma10 = np.mean(prices[ticker][:10])
if prices[ticker][0] > sma5 > sma10:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade49():
# Sell if the current price is below the 5-day SMA and the 5-day SMA is below the 10-day SMA (a bearish crossover)
trades = []
for ticker in tickers:
sma5 = np.mean(prices[ticker][:5])
sma10 = np.mean(prices[ticker][:10])
if prices[ticker][0] < sma5 < sma10:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade50():
# Buy if the current price is above the 50-day SMA and the previous price was below the 50-day SMA (a bullish breakthrough)
trades = []
for ticker in tickers:
sma50 = np.mean(prices[ticker][:50])
if prices[ticker][0] > sma50 and prices[ticker][1] < sma50:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade51():
# Sell if the current price is below the 50-day SMA and the previous price was above the 50-day SMA (a bearish breakthrough)
trades = []
for ticker in tickers:
sma50 = np.mean(prices[ticker][:50])
if prices[ticker][0] < sma50 and prices[ticker][1] > sma50:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade52():
# Buy if the current price is more than 2 standard deviations below the 20-day mean (a potential oversold condition)
trades = []
for ticker in tickers:
mean20 = np.mean(prices[ticker][:20])
std20 = np.std(prices[ticker][:20])
if prices[ticker][0] < mean20 - 2 * std20:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade53():
# Sell if the current price is more than 2 standard deviations above the 20-day mean (a potential overbought condition)
trades = []
for ticker in tickers:
mean20 = np.mean(prices[ticker][:20])
std20 = np.std(prices[ticker][:20])
if prices[ticker][0] > mean20 + 2 * std20:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade54():
# Buy if the current price is below the 50-day mean and the 50-day mean is increasing (a potential uptrend)
trades = []
for ticker in tickers:
mean50 = np.mean(prices[ticker][:50])
prev_mean50 = np.mean(prices[ticker][1:51])
if prices[ticker][0] < mean50 and mean50 > prev_mean50:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade55():
# Sell if the current price is above the 50-day mean and the 50-day mean is decreasing (a potential downtrend)
trades = []
for ticker in tickers:
mean50 = np.mean(prices[ticker][:50])
prev_mean50 = np.mean(prices[ticker][1:51])
if prices[ticker][0] > mean50 and mean50 < prev_mean50:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade56():
# Buy if the 5-day mean is above the 50-day mean and the 5-day mean was previously below the 50-day mean (a potential trend change)
trades = []
for ticker in tickers:
mean5 = np.mean(prices[ticker][:5])
mean50 = np.mean(prices[ticker][:50])
prev_mean5 = np.mean(prices[ticker][1:6])
if mean5 > mean50 and prev_mean5 < mean50:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade57():
# Sell if the 5-day mean is below the 50-day mean and the 5-day mean was previously above the 50-day mean (a potential trend change)
trades = []
for ticker in tickers:
mean5 = np.mean(prices[ticker][:5])
mean50 = np.mean(prices[ticker][:50])
prev_mean5 = np.mean(prices[ticker][1:6])
if mean5 < mean50 and prev_mean5 > mean50:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade58():
# Buy the ticker that has had the largest percent decrease over the last 10 days (a potential mean reversion play)
percent_changes = {}
for ticker in tickers:
percent_changes[ticker] = (prices[ticker][0] - prices[ticker][9]) / prices[ticker][9] * 100
worst_ticker = min(tickers, key=lambda x: percent_changes[x])
return [Trade(worst_ticker, 100)]
def trade59():
# Sell the ticker that has had the largest percent increase over the last 10 days (a potential mean reversion play)
percent_changes = {}
for ticker in tickers:
percent_changes[ticker] = (prices[ticker][0] - prices[ticker][9]) / prices[ticker][9] * 100
best_ticker = max(tickers, key=lambda x: percent_changes[x])
return [Trade(best_ticker, -100)]
def trade60():
# Buy if the current price is above the 200-day mean and the 200-day mean is increasing (a potential long-term uptrend)
trades = []
for ticker in tickers:
mean200 = np.mean(prices[ticker][:200])
prev_mean200 = np.mean(prices[ticker][1:201])
if prices[ticker][0] > mean200 and mean200 > prev_mean200:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade61():
# Sell if the current price is below the 200-day mean and the 200-day mean is decreasing (a potential long-term downtrend)
trades = []
for ticker in tickers:
mean200 = np.mean(prices[ticker][:200])
prev_mean200 = np.mean(prices[ticker][1:201])
if prices[ticker][0] < mean200 and mean200 < prev_mean200:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade62():
# Buy if the stock's return is greater than the market's return over the last 5 days
trades = []
for ticker in tickers:
stock_return = (prices[ticker][0] - prices[ticker][4]) / prices[ticker][4]
market_return = (sum(prices[t][0] for t in tickers) - sum(prices[t][4] for t in tickers)) / sum(prices[t][4] for t in tickers)
if stock_return > market_return:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade63():
# Sell if the stock's return is less than the market's return over the last 5 days
trades = []
for ticker in tickers:
stock_return = (prices[ticker][0] - prices[ticker][4]) / prices[ticker][4]
market_return = (sum(prices[t][0] for t in tickers) - sum(prices[t][4] for t in tickers)) / sum(prices[t][4] for t in tickers)
if stock_return < market_return:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade64():
# Buy the stock with the highest relative strength compared to the market over the last 10 days
relative_strengths = {}
for ticker in tickers:
stock_return = prices[ticker][0] / prices[ticker][9]
market_return = sum(prices[t][0] for t in tickers) / sum(prices[t][9] for t in tickers)
relative_strengths[ticker] = stock_return / market_return
best_ticker = max(tickers, key=lambda x: relative_strengths[x])
return [Trade(best_ticker, 100)]
def trade65():
# Sell the stock with the lowest relative strength compared to the market over the last 10 days
relative_strengths = {}
for ticker in tickers:
stock_return = prices[ticker][0] / prices[ticker][9]
market_return = sum(prices[t][0] for t in tickers) / sum(prices[t][9] for t in tickers)
relative_strengths[ticker] = stock_return / market_return
worst_ticker = min(tickers, key=lambda x: relative_strengths[x])
return [Trade(worst_ticker, -100)]
def trade66():
# Buy stocks that have a higher Sharpe ratio than the market over the last 20 days
trades = []
market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(19)]
market_sharpe = np.mean(market_returns) / np.std(market_returns)
for ticker in tickers:
stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(19)]
stock_sharpe = np.mean(stock_returns) / np.std(stock_returns)
if stock_sharpe > market_sharpe:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade67():
# Sell stocks that have a lower Sharpe ratio than the market over the last 20 days
trades = []
market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(19)]
market_sharpe = np.mean(market_returns) / np.std(market_returns)
for ticker in tickers:
stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(19)]
stock_sharpe = np.mean(stock_returns) / np.std(stock_returns)
if stock_sharpe < market_sharpe:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade68():
# Buy stocks that have a higher beta than 1 (they move more than the market)
trades = []
market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(49)]
for ticker in tickers:
stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(49)]
beta = np.cov(stock_returns, market_returns)[0, 1] / np.var(market_returns)
if beta > 1:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade69():
# Sell stocks that have a lower beta than 1 (they move less than the market)
trades = []
market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(49)]
for ticker in tickers:
stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(49)]
beta = np.cov(stock_returns, market_returns)[0, 1] / np.var(market_returns)
if beta < 1:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades
def trade70():
# Buy stocks that have a higher percentage of up days than the market over the last 50 days
trades = []
market_up_days = sum(sum(prices[t][i] for t in tickers) > sum(prices[t][i+1] for t in tickers) for i in range(49))
for ticker in tickers:
stock_up_days = sum(prices[ticker][i] > prices[ticker][i+1] for i in range(49))
if stock_up_days > market_up_days:
quantity = random.randrange(1, 100)
trades.append(Trade(ticker, quantity))
return trades
def trade71():
# Sell stocks that have a lower percentage of up days than the market over the last 50 days
trades = []
market_up_days = sum(sum(prices[t][i] for t in tickers) > sum(prices[t][i+1] for t in tickers) for i in range(49))
for ticker in tickers:
stock_up_days = sum(prices[ticker][i] > prices[ticker][i+1] for i in range(49))
if stock_up_days < market_up_days:
quantity = random.randrange(-100, -1)
trades.append(Trade(ticker, quantity))
return trades |