File size: 29,284 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# tickers is a list of stock tickers
import tickers

# prices is a dict; the key is a ticker and the value is a list of historic prices, today first
import prices

# Trade represents a decision to buy or sell a quantity of a ticker
import Trade

import random
import numpy as np

def trade2():
    # Buy if the current price is lower than the average of the last 5 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < np.mean(prices[ticker][1:6]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade3():
    # Sell if the current price is higher than the average of the last 10 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > np.mean(prices[ticker][1:11]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade4():
    # Buy if the current price is the lowest in the last 3 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] == min(prices[ticker][:3]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade5():
    # Sell if the current price is the highest in the last 3 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] == max(prices[ticker][:3]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade6():
    # Buy if the current price is higher than the previous day's price
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > prices[ticker][1]:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade7():
    # Sell if the current price is lower than the previous day's price
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < prices[ticker][1]:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade8():
    # Buy if the current price is higher than the average of the last 20 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > np.mean(prices[ticker][1:21]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade9():
    # Sell if the current price is lower than the average of the last 20 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < np.mean(prices[ticker][1:21]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade10():
    # Buy if the current price is higher than the highest price in the last 5 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > max(prices[ticker][1:6]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade11():
    # Sell if the current price is lower than the lowest price in the last 5 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < min(prices[ticker][1:6]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade12():
    # Long/Short: Buy the best-performing stock and sell the worst-performing stock in the last 10 days
    best_ticker = max(tickers, key=lambda x: (prices[x][0] - prices[x][9]) / prices[x][9])
    worst_ticker = min(tickers, key=lambda x: (prices[x][0] - prices[x][9]) / prices[x][9])
    return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]

def trade13():
    # Buy if the 5-day moving average crosses above the 20-day moving average
    trades = []
    for ticker in tickers:
        if np.mean(prices[ticker][:5]) > np.mean(prices[ticker][:20]) and np.mean(prices[ticker][1:6]) <= np.mean(prices[ticker][1:21]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade14():
    # Sell if the 5-day moving average crosses below the 20-day moving average
    trades = []
    for ticker in tickers:
        if np.mean(prices[ticker][:5]) < np.mean(prices[ticker][:20]) and np.mean(prices[ticker][1:6]) >= np.mean(prices[ticker][1:21]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade15():
    # Buy if the current volume is higher than the average volume of the last 10 days
    trades = []
    for ticker in tickers:
        if volumes[ticker][0] > np.mean(volumes[ticker][1:11]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade16():
    # Sell if the current volume is lower than the average volume of the last 10 days
    trades = []
    for ticker in tickers:
        if volumes[ticker][0] < np.mean(volumes[ticker][1:11]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade17():
    # Long/Short: Buy the stock with the highest relative strength index (RSI) and sell the stock with the lowest RSI
    rsi = {}
    for ticker in tickers:
        gains = [max(prices[ticker][i] - prices[ticker][i+1], 0) for i in range(13)]
        losses = [max(prices[ticker][i+1] - prices[ticker][i], 0) for i in range(13)]
        avg_gain = sum(gains) / 14
        avg_loss = sum(losses) / 14
        rs = avg_gain / avg_loss if avg_loss > 0 else 100
        rsi[ticker] = 100 - (100 / (1 + rs))
    best_ticker = max(tickers, key=lambda x: rsi[x])
    worst_ticker = min(tickers, key=lambda x: rsi[x])
    return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]

def trade18():
    # Buy if the current price is higher than the 50-day moving average and the 50-day moving average is higher than the 200-day moving average
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > np.mean(prices[ticker][:50]) > np.mean(prices[ticker][:200]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade19():
    # Sell if the current price is lower than the 50-day moving average and the 50-day moving average is lower than the 200-day moving average
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < np.mean(prices[ticker][:50]) < np.mean(prices[ticker][:200]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade20():
    # Long/Short: Buy the stock with the highest momentum and sell the stock with the lowest momentum
    momentums = {}
    for ticker in tickers:
        momentums[ticker] = prices[ticker][0] - prices[ticker][19]
    best_ticker = max(tickers, key=lambda x: momentums[x])
    worst_ticker = min(tickers, key=lambda x: momentums[x])
    return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]

def trade21():
    # Buy if the current price is higher than the upper Bollinger Band
    trades = []
    for ticker in tickers:
        sma = np.mean(prices[ticker][:20])
        std = np.std(prices[ticker][:20])
        upper_band = sma + 2 * std
        if prices[ticker][0] > upper_band:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade22():
    # Sell if the current price is lower than the lower Bollinger Band
    trades = []
    for ticker in tickers:
        sma = np.mean(prices[ticker][:20])
        std = np.std(prices[ticker][:20])
        lower_band = sma - 2 * std
        if prices[ticker][0] < lower_band:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade23():
    # Buy if the current volatility is higher than the average volatility of the last 10 days
    trades = []
    for ticker in tickers:
        volatility = np.std(prices[ticker][:10])
        avg_volatility = np.mean([np.std(prices[ticker][i:i+10]) for i in range(10)])
        if volatility > avg_volatility:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade24():
    # Sell if the current volatility is lower than the average volatility of the last 10 days
    trades = []
    for ticker in tickers:
        volatility = np.std(prices[ticker][:10])
        avg_volatility = np.mean([np.std(prices[ticker][i:i+10]) for i in range(10)])
        if volatility < avg_volatility:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade25():
    # Long/Short: Buy the stock with the lowest volatility and sell the stock with the highest volatility
    volatilities = {}
    for ticker in tickers:
        volatilities[ticker] = np.std(prices[ticker][:10])
    best_ticker = min(tickers, key=lambda x: volatilities[x])
    worst_ticker = max(tickers, key=lambda x: volatilities[x])
    return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]

def trade26():
    # Buy if the current price is higher than the 20-day exponential moving average (EMA)
    trades = []
    for ticker in tickers:
        ema = prices[ticker][0]
        multiplier = 2 / (20 + 1)
        for i in range(1, 20):
            ema = (prices[ticker][i] - ema) * multiplier + ema
        if prices[ticker][0] > ema:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade27():
    # Sell if the current price is lower than the 20-day exponential moving average (EMA)
    trades = []
    for ticker in tickers:
        ema = prices[ticker][0]
        multiplier = 2 / (20 + 1)
        for i in range(1, 20):
            ema = (prices[ticker][i] - ema) * multiplier + ema
        if prices[ticker][0] < ema:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade28():
    # Buy if the current price is higher than the upper Keltner Channel
    trades = []
    for ticker in tickers:
        ema = prices[ticker][0]
        multiplier = 2 / (20 + 1)
        for i in range(1, 20):
            ema = (prices[ticker][i] - ema) * multiplier + ema
        atr = np.mean([np.max(prices[ticker][i:i+10]) - np.min(prices[ticker][i:i+10]) for i in range(10)])
        upper_channel = ema + 2 * atr
        if prices[ticker][0] > upper_channel:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade29():
    # Sell if the current price is lower than the lower Keltner Channel
    trades = []
    for ticker in tickers:
        ema = prices[ticker][0]
        multiplier = 2 / (20 + 1)
        for i in range(1, 20):
            ema = (prices[ticker][i] - ema) * multiplier + ema
        atr = np.mean([np.max(prices[ticker][i:i+10]) - np.min(prices[ticker][i:i+10]) for i in range(10)])
        lower_channel = ema - 2 * atr
        if prices[ticker][0] < lower_channel:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade30():
    # Long/Short: Buy the stock with the highest Sharpe ratio and sell the stock with the lowest Sharpe ratio
    sharpe_ratios = {}
    for ticker in tickers:
        returns = [prices[ticker][i] / prices[ticker][i+1] - 1 for i in range(19)]
        sharpe_ratios[ticker] = np.mean(returns) / np.std(returns)
    best_ticker = max(tickers, key=lambda x: sharpe_ratios[x])
    worst_ticker = min(tickers, key=lambda x: sharpe_ratios[x])
    return [Trade(best_ticker, 100), Trade(worst_ticker, -100)]

def trade31():
    # Buy if the current price is higher than the Ichimoku Cloud conversion line
    trades = []
    for ticker in tickers:
        conversion_line = (np.max(prices[ticker][:9]) + np.min(prices[ticker][:9])) / 2
        if prices[ticker][0] > conversion_line:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade32():
    # Buy if the current price is higher than the price 5 days ago
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > prices[ticker][4]:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade33():
    # Sell if the current price is lower than the price 5 days ago
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < prices[ticker][4]:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade34():
    # Buy if the current price is the highest in the last 15 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] == max(prices[ticker][:15]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade35():
    # Sell if the current price is the lowest in the last 15 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] == min(prices[ticker][:15]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade36():
    # Buy if the current price is higher than the 10-day simple moving average (SMA)
    trades = []
    for ticker in tickers:
        sma = np.mean(prices[ticker][:10])
        if prices[ticker][0] > sma:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade37():
    # Sell if the current price is lower than the 10-day simple moving average (SMA)
    trades = []
    for ticker in tickers:
        sma = np.mean(prices[ticker][:10])
        if prices[ticker][0] < sma:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade38():
    # Buy if the current price is higher than the highest price in the last 20 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > max(prices[ticker][:20]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade39():
    # Sell if the current price is lower than the lowest price in the last 20 days
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < min(prices[ticker][:20]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade40():
    # Buy if the current price is higher than the 50-day SMA
    trades = []
    for ticker in tickers:
        sma = np.mean(prices[ticker][:50])
        if prices[ticker][0] > sma:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade41():
    # Sell if the current price is lower than the 50-day SMA
    trades = []
    for ticker in tickers:
        sma = np.mean(prices[ticker][:50])
        if prices[ticker][0] < sma:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade42():
    # Buy if the current price is higher than the previous 2 days (a simple uptrend)
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > prices[ticker][1] > prices[ticker][2]:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade43():
    # Sell if the current price is lower than the previous 2 days (a simple downtrend)
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < prices[ticker][1] < prices[ticker][2]:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade44():
    # Buy if the current price is higher than the previous day's high (a breakout)
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > max(prices[ticker][1:2]):
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade45():
    # Sell if the current price is lower than the previous day's low (a breakdown)
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < min(prices[ticker][1:2]):
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade46():
    # Buy if the current price is above the previous day's high and the previous day was a down day (a potential reversal)
    trades = []
    for ticker in tickers:
        if prices[ticker][0] > max(prices[ticker][1:2]) and prices[ticker][1] < prices[ticker][2]:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade47():
    # Sell if the current price is below the previous day's low and the previous day was an up day (a potential reversal)
    trades = []
    for ticker in tickers:
        if prices[ticker][0] < min(prices[ticker][1:2]) and prices[ticker][1] > prices[ticker][2]:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade48():
    # Buy if the current price is above the 5-day SMA and the 5-day SMA is above the 10-day SMA (a bullish crossover)
    trades = []
    for ticker in tickers:
        sma5 = np.mean(prices[ticker][:5])
        sma10 = np.mean(prices[ticker][:10])
        if prices[ticker][0] > sma5 > sma10:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade49():
    # Sell if the current price is below the 5-day SMA and the 5-day SMA is below the 10-day SMA (a bearish crossover)
    trades = []
    for ticker in tickers:
        sma5 = np.mean(prices[ticker][:5])
        sma10 = np.mean(prices[ticker][:10])
        if prices[ticker][0] < sma5 < sma10:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade50():
    # Buy if the current price is above the 50-day SMA and the previous price was below the 50-day SMA (a bullish breakthrough)
    trades = []
    for ticker in tickers:
        sma50 = np.mean(prices[ticker][:50])
        if prices[ticker][0] > sma50 and prices[ticker][1] < sma50:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade51():
    # Sell if the current price is below the 50-day SMA and the previous price was above the 50-day SMA (a bearish breakthrough)
    trades = []
    for ticker in tickers:
        sma50 = np.mean(prices[ticker][:50])
        if prices[ticker][0] < sma50 and prices[ticker][1] > sma50:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade52():
    # Buy if the current price is more than 2 standard deviations below the 20-day mean (a potential oversold condition)
    trades = []
    for ticker in tickers:
        mean20 = np.mean(prices[ticker][:20])
        std20 = np.std(prices[ticker][:20])
        if prices[ticker][0] < mean20 - 2 * std20:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade53():
    # Sell if the current price is more than 2 standard deviations above the 20-day mean (a potential overbought condition)
    trades = []
    for ticker in tickers:
        mean20 = np.mean(prices[ticker][:20])
        std20 = np.std(prices[ticker][:20])
        if prices[ticker][0] > mean20 + 2 * std20:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade54():
    # Buy if the current price is below the 50-day mean and the 50-day mean is increasing (a potential uptrend)
    trades = []
    for ticker in tickers:
        mean50 = np.mean(prices[ticker][:50])
        prev_mean50 = np.mean(prices[ticker][1:51])
        if prices[ticker][0] < mean50 and mean50 > prev_mean50:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade55():
    # Sell if the current price is above the 50-day mean and the 50-day mean is decreasing (a potential downtrend)
    trades = []
    for ticker in tickers:
        mean50 = np.mean(prices[ticker][:50])
        prev_mean50 = np.mean(prices[ticker][1:51])
        if prices[ticker][0] > mean50 and mean50 < prev_mean50:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade56():
    # Buy if the 5-day mean is above the 50-day mean and the 5-day mean was previously below the 50-day mean (a potential trend change)
    trades = []
    for ticker in tickers:
        mean5 = np.mean(prices[ticker][:5])
        mean50 = np.mean(prices[ticker][:50])
        prev_mean5 = np.mean(prices[ticker][1:6])
        if mean5 > mean50 and prev_mean5 < mean50:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade57():
    # Sell if the 5-day mean is below the 50-day mean and the 5-day mean was previously above the 50-day mean (a potential trend change)
    trades = []
    for ticker in tickers:
        mean5 = np.mean(prices[ticker][:5])
        mean50 = np.mean(prices[ticker][:50])
        prev_mean5 = np.mean(prices[ticker][1:6])
        if mean5 < mean50 and prev_mean5 > mean50:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade58():
    # Buy the ticker that has had the largest percent decrease over the last 10 days (a potential mean reversion play)
    percent_changes = {}
    for ticker in tickers:
        percent_changes[ticker] = (prices[ticker][0] - prices[ticker][9]) / prices[ticker][9] * 100
    worst_ticker = min(tickers, key=lambda x: percent_changes[x])
    return [Trade(worst_ticker, 100)]

def trade59():
    # Sell the ticker that has had the largest percent increase over the last 10 days (a potential mean reversion play)
    percent_changes = {}
    for ticker in tickers:
        percent_changes[ticker] = (prices[ticker][0] - prices[ticker][9]) / prices[ticker][9] * 100
    best_ticker = max(tickers, key=lambda x: percent_changes[x])
    return [Trade(best_ticker, -100)]

def trade60():
    # Buy if the current price is above the 200-day mean and the 200-day mean is increasing (a potential long-term uptrend)
    trades = []
    for ticker in tickers:
        mean200 = np.mean(prices[ticker][:200])
        prev_mean200 = np.mean(prices[ticker][1:201])
        if prices[ticker][0] > mean200 and mean200 > prev_mean200:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade61():
    # Sell if the current price is below the 200-day mean and the 200-day mean is decreasing (a potential long-term downtrend)
    trades = []
    for ticker in tickers:
        mean200 = np.mean(prices[ticker][:200])
        prev_mean200 = np.mean(prices[ticker][1:201])
        if prices[ticker][0] < mean200 and mean200 < prev_mean200:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade62():
    # Buy if the stock's return is greater than the market's return over the last 5 days
    trades = []
    for ticker in tickers:
        stock_return = (prices[ticker][0] - prices[ticker][4]) / prices[ticker][4]
        market_return = (sum(prices[t][0] for t in tickers) - sum(prices[t][4] for t in tickers)) / sum(prices[t][4] for t in tickers)
        if stock_return > market_return:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade63():
    # Sell if the stock's return is less than the market's return over the last 5 days
    trades = []
    for ticker in tickers:
        stock_return = (prices[ticker][0] - prices[ticker][4]) / prices[ticker][4]
        market_return = (sum(prices[t][0] for t in tickers) - sum(prices[t][4] for t in tickers)) / sum(prices[t][4] for t in tickers)
        if stock_return < market_return:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade64():
    # Buy the stock with the highest relative strength compared to the market over the last 10 days
    relative_strengths = {}
    for ticker in tickers:
        stock_return = prices[ticker][0] / prices[ticker][9]
        market_return = sum(prices[t][0] for t in tickers) / sum(prices[t][9] for t in tickers)
        relative_strengths[ticker] = stock_return / market_return
    best_ticker = max(tickers, key=lambda x: relative_strengths[x])
    return [Trade(best_ticker, 100)]

def trade65():
    # Sell the stock with the lowest relative strength compared to the market over the last 10 days
    relative_strengths = {}
    for ticker in tickers:
        stock_return = prices[ticker][0] / prices[ticker][9]
        market_return = sum(prices[t][0] for t in tickers) / sum(prices[t][9] for t in tickers)
        relative_strengths[ticker] = stock_return / market_return
    worst_ticker = min(tickers, key=lambda x: relative_strengths[x])
    return [Trade(worst_ticker, -100)]

def trade66():
    # Buy stocks that have a higher Sharpe ratio than the market over the last 20 days
    trades = []
    market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(19)]
    market_sharpe = np.mean(market_returns) / np.std(market_returns)
    for ticker in tickers:
        stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(19)]
        stock_sharpe = np.mean(stock_returns) / np.std(stock_returns)
        if stock_sharpe > market_sharpe:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade67():
    # Sell stocks that have a lower Sharpe ratio than the market over the last 20 days
    trades = []
    market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(19)]
    market_sharpe = np.mean(market_returns) / np.std(market_returns)
    for ticker in tickers:
        stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(19)]
        stock_sharpe = np.mean(stock_returns) / np.std(stock_returns)
        if stock_sharpe < market_sharpe:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade68():
    # Buy stocks that have a higher beta than 1 (they move more than the market)
    trades = []
    market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(49)]
    for ticker in tickers:
        stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(49)]
        beta = np.cov(stock_returns, market_returns)[0, 1] / np.var(market_returns)
        if beta > 1:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade69():
    # Sell stocks that have a lower beta than 1 (they move less than the market)
    trades = []
    market_returns = [(sum(prices[t][i] for t in tickers) / sum(prices[t][i+1] for t in tickers)) - 1 for i in range(49)]
    for ticker in tickers:
        stock_returns = [(prices[ticker][i] / prices[ticker][i+1]) - 1 for i in range(49)]
        beta = np.cov(stock_returns, market_returns)[0, 1] / np.var(market_returns)
        if beta < 1:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades

def trade70():
    # Buy stocks that have a higher percentage of up days than the market over the last 50 days
    trades = []
    market_up_days = sum(sum(prices[t][i] for t in tickers) > sum(prices[t][i+1] for t in tickers) for i in range(49))
    for ticker in tickers:
        stock_up_days = sum(prices[ticker][i] > prices[ticker][i+1] for i in range(49))
        if stock_up_days > market_up_days:
            quantity = random.randrange(1, 100)
            trades.append(Trade(ticker, quantity))
    return trades

def trade71():
    # Sell stocks that have a lower percentage of up days than the market over the last 50 days
    trades = []
    market_up_days = sum(sum(prices[t][i] for t in tickers) > sum(prices[t][i+1] for t in tickers) for i in range(49))
    for ticker in tickers:
        stock_up_days = sum(prices[ticker][i] > prices[ticker][i+1] for i in range(49))
        if stock_up_days < market_up_days:
            quantity = random.randrange(-100, -1)
            trades.append(Trade(ticker, quantity))
    return trades