File size: 15,467 Bytes
ef2207d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# YOLOR PyTorch utils

import datetime
import logging
import math
import os
import platform
import subprocess
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision

try:
    import thop  # for FLOPS computation
except ImportError:
    thop = None
logger = logging.getLogger(__name__)


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
    Decorator to make all processes in distributed training wait for each local_master to do something.
    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()


def init_torch_seeds(seed=0):
    # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
    torch.manual_seed(seed)
    if seed == 0:  # slower, more reproducible
        cudnn.benchmark, cudnn.deterministic = False, True
    else:  # faster, less reproducible
        cudnn.benchmark, cudnn.deterministic = True, False


def date_modified(path=__file__):
    # return human-readable file modification date, i.e. '2021-3-26'
    t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
    return f'{t.year}-{t.month}-{t.day}'


def git_describe(path=Path(__file__).parent):  # path must be a directory
    # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
    s = f'git -C {path} describe --tags --long --always'
    try:
        return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
    except subprocess.CalledProcessError as e:
        return ''  # not a git repository


def select_device(device='', batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} '  # string
    cpu = device.lower() == 'cpu'
    if cpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
    elif device:  # non-cpu device requested
        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable
        assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested'  # check availability

    cuda = not cpu and torch.cuda.is_available()
    if cuda:
        n = torch.cuda.device_count()
        if n > 1 and batch_size:  # check that batch_size is compatible with device_count
            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
        space = ' ' * len(s)
        for i, d in enumerate(device.split(',') if device else range(n)):
            p = torch.cuda.get_device_properties(i)
            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n"  # bytes to MB
    else:
        s += 'CPU\n'

    logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s)  # emoji-safe
    return torch.device('cuda:0' if cuda else 'cpu')


def time_synchronized():
    # pytorch-accurate time
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()


def profile(x, ops, n=100, device=None):
    # profile a pytorch module or list of modules. Example usage:
    #     x = torch.randn(16, 3, 640, 640)  # input
    #     m1 = lambda x: x * torch.sigmoid(x)
    #     m2 = nn.SiLU()
    #     profile(x, [m1, m2], n=100)  # profile speed over 100 iterations

    device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    x = x.to(device)
    x.requires_grad = True
    print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
    print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
    for m in ops if isinstance(ops, list) else [ops]:
        m = m.to(device) if hasattr(m, 'to') else m  # device
        m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m  # type
        dtf, dtb, t = 0., 0., [0., 0., 0.]  # dt forward, backward
        try:
            flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPS
        except:
            flops = 0

        for _ in range(n):
            t[0] = time_synchronized()
            y = m(x)
            t[1] = time_synchronized()
            try:
                _ = y.sum().backward()
                t[2] = time_synchronized()
            except:  # no backward method
                t[2] = float('nan')
            dtf += (t[1] - t[0]) * 1000 / n  # ms per op forward
            dtb += (t[2] - t[1]) * 1000 / n  # ms per op backward

        s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
        s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
        p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0  # parameters
        print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')


def is_parallel(model):
    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)


def intersect_dicts(da, db, exclude=()):
    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
    return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}


def initialize_weights(model):
    for m in model.modules():
        t = type(m)
        if t is nn.Conv2d:
            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif t is nn.BatchNorm2d:
            m.eps = 1e-3
            m.momentum = 0.03
        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
            m.inplace = True


def find_modules(model, mclass=nn.Conv2d):
    # Finds layer indices matching module class 'mclass'
    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]


def sparsity(model):
    # Return global model sparsity
    a, b = 0., 0.
    for p in model.parameters():
        a += p.numel()
        b += (p == 0).sum()
    return b / a


def prune(model, amount=0.3):
    # Prune model to requested global sparsity
    import torch.nn.utils.prune as prune
    print('Pruning model... ', end='')
    for name, m in model.named_modules():
        if isinstance(m, nn.Conv2d):
            prune.l1_unstructured(m, name='weight', amount=amount)  # prune
            prune.remove(m, 'weight')  # make permanent
    print(' %.3g global sparsity' % sparsity(model))


def fuse_conv_and_bn(conv, bn):
    # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
    fusedconv = nn.Conv2d(conv.in_channels,
                          conv.out_channels,
                          kernel_size=conv.kernel_size,
                          stride=conv.stride,
                          padding=conv.padding,
                          groups=conv.groups,
                          bias=True).requires_grad_(False).to(conv.weight.device)

    # prepare filters
    w_conv = conv.weight.clone().view(conv.out_channels, -1)
    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))

    # prepare spatial bias
    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

    return fusedconv


def model_info(model, verbose=False, img_size=640):
    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
    n_p = sum(x.numel() for x in model.parameters())  # number parameters
    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
    if verbose:
        print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
        for i, (name, p) in enumerate(model.named_parameters()):
            name = name.replace('module_list.', '')
            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))

    try:  # FLOPS
        from thop import profile
        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
        img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device)  # input
        flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2  # stride GFLOPS
        img_size = img_size if isinstance(img_size, list) else [img_size, img_size]  # expand if int/float
        fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride)  # 640x640 GFLOPS
    except (ImportError, Exception):
        fs = ''

    logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")


def load_classifier(name='resnet101', n=2):
    # Loads a pretrained model reshaped to n-class output
    model = torchvision.models.__dict__[name](pretrained=True)

    # ResNet model properties
    # input_size = [3, 224, 224]
    # input_space = 'RGB'
    # input_range = [0, 1]
    # mean = [0.485, 0.456, 0.406]
    # std = [0.229, 0.224, 0.225]

    # Reshape output to n classes
    filters = model.fc.weight.shape[1]
    model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
    model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
    model.fc.out_features = n
    return model


def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
    # scales img(bs,3,y,x) by ratio constrained to gs-multiple
    if ratio == 1.0:
        return img
    else:
        h, w = img.shape[2:]
        s = (int(h * ratio), int(w * ratio))  # new size
        img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
        if not same_shape:  # pad/crop img
            h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
        return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean


def copy_attr(a, b, include=(), exclude=()):
    # Copy attributes from b to a, options to only include [...] and to exclude [...]
    for k, v in b.__dict__.items():
        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
            continue
        else:
            setattr(a, k, v)


class ModelEMA:
    """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
    Keep a moving average of everything in the model state_dict (parameters and buffers).
    This is intended to allow functionality like
    https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
    A smoothed version of the weights is necessary for some training schemes to perform well.
    This class is sensitive where it is initialized in the sequence of model init,
    GPU assignment and distributed training wrappers.
    """

    def __init__(self, model, decay=0.9999, updates=0):
        # Create EMA
        self.ema = deepcopy(model.module if is_parallel(model) else model).eval()  # FP32 EMA
        # if next(model.parameters()).device.type != 'cpu':
        #     self.ema.half()  # FP16 EMA
        self.updates = updates  # number of EMA updates
        self.decay = lambda x: decay * (1 - math.exp(-x / 2000))  # decay exponential ramp (to help early epochs)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def update(self, model):
        # Update EMA parameters
        with torch.no_grad():
            self.updates += 1
            d = self.decay(self.updates)

            msd = model.module.state_dict() if is_parallel(model) else model.state_dict()  # model state_dict
            for k, v in self.ema.state_dict().items():
                if v.dtype.is_floating_point:
                    v *= d
                    v += (1. - d) * msd[k].detach()

    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
        # Update EMA attributes
        copy_attr(self.ema, model, include, exclude)


class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
    def _check_input_dim(self, input):
        # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
        # is this method that is overwritten by the sub-class
        # This original goal of this method was for tensor sanity checks
        # If you're ok bypassing those sanity checks (eg. if you trust your inference
        # to provide the right dimensional inputs), then you can just use this method
        # for easy conversion from SyncBatchNorm
        # (unfortunately, SyncBatchNorm does not store the original class - if it did
        #  we could return the one that was originally created)
        return

def revert_sync_batchnorm(module):
    # this is very similar to the function that it is trying to revert:
    # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
    module_output = module
    if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
        new_cls = BatchNormXd
        module_output = BatchNormXd(module.num_features,
                                               module.eps, module.momentum,
                                               module.affine,
                                               module.track_running_stats)
        if module.affine:
            with torch.no_grad():
                module_output.weight = module.weight
                module_output.bias = module.bias
        module_output.running_mean = module.running_mean
        module_output.running_var = module.running_var
        module_output.num_batches_tracked = module.num_batches_tracked
        if hasattr(module, "qconfig"):
            module_output.qconfig = module.qconfig
    for name, child in module.named_children():
        module_output.add_module(name, revert_sync_batchnorm(child))
    del module
    return module_output


class TracedModel(nn.Module):

    def __init__(self, model=None, device=None, img_size=(640,640)): 
        super(TracedModel, self).__init__()
        
        print(" Convert model to Traced-model... ") 
        self.stride = model.stride
        self.names = model.names
        self.model = model

        self.model = revert_sync_batchnorm(self.model)
        self.model.to('cpu')
        self.model.eval()

        self.detect_layer = self.model.model[-1]
        self.model.traced = True
        
        rand_example = torch.rand(1, 3, img_size, img_size)
        
        traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
        #traced_script_module = torch.jit.script(self.model)
        traced_script_module.save("traced_model.pt")
        print(" traced_script_module saved! ")
        self.model = traced_script_module
        self.model.to(device)
        self.detect_layer.to(device)
        print(" model is traced! \n") 

    def forward(self, x, augment=False, profile=False):
        out = self.model(x)
        out = self.detect_layer(out)
        return out