Spaces:
Runtime error
Runtime error
File size: 11,960 Bytes
d9d1031 9888b7c d9d1031 9896a51 d9d1031 9888b7c d9d1031 9888b7c d9d1031 9896a51 d9d1031 9888b7c 9896a51 d9d1031 9888b7c d9d1031 9888b7c d9d1031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import os
from transformers import AutoTokenizer, AutoConfig
from optimum.intel.openvino import OVModelForCausalLM
from generation_utils import run_generation, estimate_latency, reset_textbox,get_special_token_id
from config import SUPPORTED_LLM_MODELS
import gradio as gr
from threading import Thread
from time import perf_counter
from typing import List
from transformers import AutoTokenizer, TextIteratorStreamer
import numpy as np
import os
from flask import Flask, render_template, redirect, url_for, request, flash
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user
from werkzeug.security import generate_password_hash, check_password_hash
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your_secret_key'
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db'
db = SQLAlchemy(app)
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True, nullable=False)
email = db.Column(db.String(120), unique=True, nullable=False)
def __repr__(self):
return '<User %r>' % self.username
# Create the database tables
with app.app_context():
db.create_all()
@login_manager.user_loader
def load_user(user_id):
return User.query.get(int(user_id))
@app.route('/signup', methods=['GET', 'POST'])
def signup():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
hashed_password = generate_password_hash(password, method='sha256')
new_user = User(username=username, password=hashed_password)
db.session.add(new_user)
db.session.commit()
flash('Signup successful!', 'success')
return redirect(url_for('login'))
return render_template('signup.html')
@app.route('/login', methods=['GET', 'POST'])
def login():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
user = User.query.filter_by(username=username).first()
if user and check_password_hash(user.password, password):
login_user(user)
return redirect(url_for('dashboard'))
flash('Invalid username or password', 'danger')
return render_template('login.html')
@app.route('/dashboard')
@login_required
def dashboard():
return render_template('dashboard.html', name=current_user.username)
@app.route('/logout')
@login_required
def logout():
logout_user()
return redirect(url_for('login'))
if __name__ == '__main__':
app.run(debug=True)
model_dir = "C:/Users/KIIT/OneDrive/Desktop/INTEL/phi-2/INT8_compressed_weights"
print(f"Checking model directory: {model_dir}")
print(f"Contents: {os.listdir(model_dir)}") # Check contents of the directory
print(f"Loading model from {model_dir}")
model_name = "susnato/phi-2"
model_configuration = SUPPORTED_LLM_MODELS["phi-2"]
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
tok = AutoTokenizer.from_pretrained(model_name)
ov_model = OVModelForCausalLM.from_pretrained(
model_dir,
device="CPU",
ov_config=ov_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {})
# Continue with your tokenizer usage
response_key = model_configuration.get("response_key")
tokenizer_response_key = None
def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:
"""
Gets the token ID for a given string that has been added to the tokenizer as a special token.
Args:
tokenizer (PreTrainedTokenizer): the tokenizer
key (str): the key to convert to a single token
Raises:
ValueError: if more than one ID was generated
Returns:
int: the token ID for the given key
"""
token_ids = tokenizer.encode(key)
if len(token_ids) > 1:
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
return token_ids[0]
if response_key is not None:
tokenizer_response_key = next(
(token for token in tokenizer.additional_special_tokens if token.startswith(response_key)),
None,
)
end_key_token_id = None
if tokenizer_response_key:
try:
end_key = model_configuration.get("end_key")
if end_key:
end_key_token_id =get_special_token_id(tokenizer, end_key)
# Ensure generation stops once it generates "### End"
except ValueError:
pass
prompt_template = model_configuration.get("prompt_template", "{instruction}")
end_key_token_id = end_key_token_id or tokenizer.eos_token_id
pad_token_id = end_key_token_id or tokenizer.pad_token_id
def estimate_latency(
current_time: float,
current_perf_text: str,
new_gen_text: str,
per_token_time: List[float],
num_tokens: int,
):
"""
Helper function for performance estimation
Parameters:
current_time (float): This step time in seconds.
current_perf_text (str): Current content of performance UI field.
new_gen_text (str): New generated text.
per_token_time (List[float]): history of performance from previous steps.
num_tokens (int): Total number of generated tokens.
Returns:
update for performance text field
update for a total number of tokens
"""
num_current_toks = len(tokenizer.encode(new_gen_text))
num_tokens += num_current_toks
per_token_time.append(num_current_toks / current_time)
if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:
current_bucket = per_token_time[:-10]
return (
f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}",
num_tokens,
)
return current_perf_text, num_tokens
def run_generation(
user_text: str,
top_p: float,
temperature: float,
top_k: int,
max_new_tokens: int,
perf_text: str,
):
"""
Text generation function
Parameters:
user_text (str): User-provided instruction for a generation.
top_p (float): Nucleus sampling. If set to < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for a generation.
temperature (float): The value used to module the logits distribution.
top_k (int): The number of highest probability vocabulary tokens to keep for top-k-filtering.
max_new_tokens (int): Maximum length of generated sequence.
perf_text (str): Content of text field for printing performance results.
Returns:
model_output (str) - model-generated text
perf_text (str) - updated perf text filed content
"""
# Prepare input prompt according to model expected template
prompt_text = prompt_template.format(instruction=user_text)
# Tokenize the user text.
model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k,
eos_token_id=end_key_token_id,
pad_token_id=pad_token_id,
)
t = Thread(target=ov_model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
per_token_time = []
num_tokens = 0
start = perf_counter()
for new_text in streamer:
current_time = perf_counter() - start
model_output += new_text
perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)
yield model_output, perf_text
start = perf_counter()
return model_output, perf_text
def reset_textbox(instruction: str, response: str, perf: str):
"""
Helper function for resetting content of all text fields
Parameters:
instruction (str): Content of user instruction field.
response (str): Content of model response field.
perf (str): Content of performance info filed
Returns:
empty string for each placeholder
"""
return "", "", ""
examples = [
"Give me a recipe for pizza with pineapple",
"Write me a tweet about the new OpenVINO release",
"Explain the difference between CPU and GPU",
"Give five ideas for a great weekend with family",
"Do Androids dream of Electric sheep?",
"Who is Dolly?",
"Please give me advice on how to write resume?",
"Name 3 advantages to being a cat",
"Write instructions on how to become a good AI engineer",
"Write a love letter to my best friend",
]
def main():
with gr.Blocks() as demo:
gr.Markdown(
"# Question Answering with Model and OpenVINO.\n"
"Provide instruction which describes a task below or select among predefined examples and model writes response that performs requested task."
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="Write an email about an alpaca that likes flan",
label="User instruction",
)
model_output = gr.Textbox(label="Model response", interactive=False)
performance = gr.Textbox(label="Performance", lines=1, interactive=False)
with gr.Column(scale=1):
button_clear = gr.Button(value="Clear")
button_submit = gr.Button(value="Submit")
gr.Examples(examples, user_text)
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1,
maximum=1000,
value=256,
step=1,
interactive=True,
label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.92,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=0,
maximum=50,
value=0,
step=1,
interactive=True,
label="Top-k",
)
temperature = gr.Slider(
minimum=0.1,
maximum=5.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
user_text.submit(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_submit.click(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_clear.click(
reset_textbox,
[user_text, model_output, performance],
[user_text, model_output, performance],
)
if __name__ == "__main__":
demo.queue()
try:
demo.launch(height=800)
except Exception:
demo.launch(share=True, height=800)
# Call main function to start Gradio interface
main() |