File size: 13,699 Bytes
3c258f1
 
323a625
3c258f1
 
 
 
323a625
3c258f1
 
 
 
 
 
323a625
 
 
 
 
 
3c258f1
 
323a625
 
 
 
 
3c258f1
 
 
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
b0a0635
 
 
 
 
 
 
 
 
 
3c258f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a23db
323a625
3c258f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
323a625
 
3c258f1
323a625
3c258f1
 
323a625
 
 
 
 
 
3c258f1
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
323a625
 
 
 
 
 
3c258f1
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
323a625
3c258f1
323a625
 
3c258f1
323a625
3c258f1
323a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c258f1
323a625
3c258f1
 
323a625
 
3c258f1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from __future__ import annotations

import json
import os
import random
import time
import gradio as gr
import pandas as pd
from selenium import webdriver
from selenium.common.exceptions import WebDriverException
from PIL import Image
from io import BytesIO
import base64



from datetime import datetime
from pathlib import Path
from uuid import uuid4

import trafilatura

from datasets import load_dataset
from datasets import Features, Value, Sequence

from huggingface_hub import CommitScheduler

from huggingface_hub import whoami

from languages import ISO_CODE_TO_LANGUAGE_NAME
from texts import ABOUT_TEXT

DISABLE_FETCH_URL = os.environ.get("DISABLE_FETCH_URL", False)

if DISABLE_FETCH_URL:
    print("Fetch URL is disabled: Only dummy screenshot and text will be returned.")

DATASET_REPO_ID = os.environ.get("DATASET_REPO_ID", "malteos/seed-crawl-urls")

JSON_DATASET_DIR = Path("jsonl_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)

# Each instance of this space will spawn a unique file for each type of result
# For the life of that space, it will append to that file pushed to a dataset every so often
# It also is append_only, so no previous data will be overwritten
JSON_DATASET_PATH = JSON_DATASET_DIR / f"urls-{uuid4()}.jsonl"

if os.getenv("HF_TOKEN"):
    scheduler = CommitScheduler(
        repo_id=DATASET_REPO_ID,
        repo_type="dataset",
        folder_path=JSON_DATASET_DIR,
        path_in_repo="data",
    )
else:
    scheduler = None
    print("No HF_TOKEN found, results will not be uploaded to the hub.")

def save_to_jsonl(obj: dict) -> None:
    if scheduler:
        with scheduler.lock:
            with JSON_DATASET_PATH.open("a") as f:
                json.dump(obj, f)
                f.write("\n")

def get_candidate_urls():
    return [
        "http://example.com",
        "https://wikipedia.org/",
        "https://occiglot.eu",
        "https://ostendorff.org",
        "https://fr.wikipedia.org/",
        "https://amazon.com/"
    ]
    
def pil_image_to_base64(image):
    # Save the image to a BytesIO buffer
    buffer = BytesIO()
    image.save(buffer, format="PNG")  # You can change the format if needed
    buffer.seek(0)

    # Encode the bytes into a base64 string
    img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")

    # Format the base64 string for use in an HTML image tag
    html_img_tag_src = f"data:image/png;base64,{img_base64}"
    return html_img_tag_src

def fetch_screenshot_and_text_from_url(url):
    screen_width = 1080
    height = 350
    text = ""

    if DISABLE_FETCH_URL:
        screenshot = Image.new('RGB', (350, height))
        text = f"Some dummy text for {url} (offline mode enabled)"

    else:
        options = webdriver.ChromeOptions()
        options.add_argument('--headless')
        options.add_argument('--no-sandbox')
        options.add_argument('--disable-dev-shm-usage')

        try:
            driver = webdriver.Chrome(options=options)
            #driver.set_window_size(1080, 720)  # Adjust the window size here
            driver.get(url)

            driver.implicitly_wait(10)

            # Wait for the page to fully load; you may adjust the sleep time or implement a wait condition
            # time.sleep(2)

            # fetch html from web page
            html_str = driver.page_source

            # Execute JS to find the full height of the rendered page
            scroll_height = driver.execute_script("return document.body.scrollHeight")

            # Resize the window to full page height
            driver.set_window_size(screen_width, max(scroll_height + 200, 900))

            raw_screenshot = driver.get_screenshot_as_png()

            screenshot = Image.open(BytesIO(raw_screenshot))

            # extract text
            text = trafilatura.extract(html_str)

        except WebDriverException as e:
            screenshot = Image.new('RGB', (1, 1))
        finally:
            if driver:
                driver.quit()


    # embed base65 encoded image as <img> tag into html string
    screenshot_html_str = f"""<div style="width: 100%; height: {height}px; overflow-y: scroll;"><img src="{pil_image_to_base64(screenshot)}" /></div>"""    

    # return gr.update(value=html_str, visible=True), text, gr.update(visible=True)
    return screenshot_html_str, text

    
with gr.Blocks(fill_height=True) as demo:

    gr.Markdown(
    """
    # Seed Crawl Annotator
    """)
        
    with gr.Tab("Contribute"):
        gr.Markdown("Welcome! This is a crowd-sourced effort to improve crawling of low-resource languages. Your contributions will be part of a public dataset.")
        profile_state = gr.State([])
        gr.LoginButton()

        with gr.Column(visible=False) as wrapper_col:
            login_status = gr.Markdown("no", visible=False)

            def handle_login(profile: gr.OAuthProfile | None) -> dict:
                if profile:
                    gr.Info(f"Logged in as {profile.username}")
                    return {
                        profile_state: f"{profile.username}", 
                        wrapper_col: gr.update(visible=True),
                        login_status:  "yes",
                    }
                else:
                    gr.Warning(f"You need to login to use this app.")
                    return {
                        profile_state: [],
                        wrapper_col: gr.update(visible=False),
                        login_status:  "no",
                    }
                
            demo.load(handle_login, inputs=None, outputs=[profile_state, wrapper_col, login_status])

            url_field = gr.Textbox(label="Website URL", placeholder="Enter a URL you want to annotate", interactive=True)

            with gr.Row():
                set_random_btn = gr.Button("Pick Random URL", variant="secondary", interactive=True)

                load_btn = gr.Button("Annotate URL", variant="primary", interactive=True)

            with gr.Row():
                extracted_text = gr.Textbox(
                    label="Extracted text", 
                    max_lines=15, 
                    lines=15, 
                    visible=True, 
                    placeholder="Click on `Load URL` to fetch Web page's text content."
                )
                
                screenshot_scrollable = gr.HTML("", visible=False)

            with gr.Column(visible=False) as output_col:
                with gr.Row():
                    language_codes = gr.Dropdown(
                            [("unknown", "unknown")] + [(f"{code}: {name}", code) for code, name in ISO_CODE_TO_LANGUAGE_NAME.items()], 
                            label="Language codes",
                            multiselect=True,
                            # allow_custom_value=True,
                    )
                    categories = gr.CheckboxGroup(["News", "Culture/History", "Government", "Political Parties", "Other"], label="Categories")

                with gr.Row():
                    do_crawl_btn = gr.Button("βœ… Do Crawl", elem_classes="success")
                    dont_crawl_btn = gr.Button("❌ Don't Crawl", elem_classes="error")
                    # random_subpage_btn = gr.Button("πŸ” Load Another Subpage", variant="secondary")


            def set_random_url():
                candidate_urls = get_candidate_urls()
                selected_url = random.choice(candidate_urls)
                return selected_url    
                
            set_random_btn.click(fn=set_random_url, outputs=url_field)


            def load_url(url):
                screenshot_html_str, text = fetch_screenshot_and_text_from_url(url)

                if not screenshot_html_str or not text:
                    gr.Error("Could not fetch data for url")
                else:

                    return {
                        screenshot_scrollable: gr.update(value=screenshot_html_str, visible=True), 
                        extracted_text:  gr.update(value=text, visible=True),
                        output_col: gr.update(visible=True),
                        language_codes: "unknown", # Reset by set to invalid value # gr.update(None, label=url),
                        categories:  gr.update(value=None),
                    }

            load_btn.click(fn=load_url, inputs=url_field, outputs=[screenshot_scrollable, extracted_text, output_col, language_codes, categories], api_name="load_url")

            def do_crawl_error_handler(msg):
                # error response
                print("error -> no changes")
                gr.Warning(f"❌ Error: {msg}")

                return {
                    url_field: gr.update(),
                    output_col: gr.update(),
                    extracted_text: gr.update(),
                    screenshot_scrollable: gr.update(),
                }

            def do_crawl(profile_state, url, language_codes, categories, do_crawl=True):
                print(f"{url=}")
                print(f"{language_codes=}")
                print(f"{categories=}")
                print(f"{do_crawl=}")


                
                if not profile_state:
                    return do_crawl_error_handler("You are not authenticated.")

                elif len(url) <= 0:
                    return do_crawl_error_handler("URL is empty.")

                elif len(categories) <= 0:
                    return do_crawl_error_handler("You must select at least one category.")
                    
                elif len(language_codes) <= 0:
                    return do_crawl_error_handler("You must select at least one language.")
                else:
                    # 
                    save_to_jsonl({
                        "url": url,
                        "language_codes": language_codes,
                        "categories": categories,
                        "do_crawl": int(do_crawl),
                        "username": profile_state,
                        "submission_datetime":  datetime.now().isoformat(),
                    })
                    # html_str = f"<b>Thanks {profile_state}, we have saved your feedback!</b>"
                    gr.Info("βœ… Thanks for your feedback. Let's continue!")
               
                    return {
                        url_field: "",  # TODO fetch new url
                        output_col: gr.update(visible=False),
                        extracted_text: gr.update(value=None, visible=True),
                        screenshot_scrollable: gr.update(value="", visible=False),
                    }


                
            # def do_crawl(profile_state, url, language_codes, categories):
            #     return do_crawl_or_not(profile_state, url, language_codes, categories, do_crawl=True)
                
            # def dont_crawl(profile_state, url, language_codes, categories):
            #     return do_crawl_or_not(profile_state, url, language_codes, categories, do_crawl=False)
                
            
            do_crawl_btn.click(
                fn=do_crawl, 
                inputs=[profile_state, url_field, language_codes, categories], 
                outputs=[
                    url_field, 
                    output_col, 
                    extracted_text, 
                    screenshot_scrollable
                ], 
                api_name="do_crawl",
            )
            dont_crawl_btn.click(
                fn=do_crawl, 
                inputs=[profile_state, url_field, language_codes, categories], 
                outputs=[
                    url_field, 
                    output_col, 
                    extracted_text, 
                    screenshot_scrollable
                ], 
                api_name="do_crawl",
            )

            # dont_crawl_btn.click(fn=dont_crawl, inputs=[profile_state, url, language_codes, categories], outputs=[url, output_col, extracted_text, screenshot_scrollable], api_name="dont_crawl")

            # def random_subpage(url):
            #     new_url = "http://example.com"

            #     return [new_url, *fetch_screenshot_and_text_from_url(new_url)]

            # random_subpage_btn.click(fn=random_subpage, inputs=url, outputs=[url, screenshot_scrollable, extracted_text, output_col], api_name="load_random_subpage")
    
    with gr.Tab("Browse Contributions"):
        gr.Markdown("This page lists all the data we have collected so far. Please note that the list might be out-of-sync.")

        """
        dataset_info:
        - config_name: base
            features:
            - name: url
                dtype: string
            - name: language_codes
                list: string
            - name: categories
                list: string
            - name: do_crawl
                dtype: int32
            - name: username
                dtype: string
            - name: submission_datetime
                dtype: string
        """

        features = Features({
            "url": Value("string"),
            "language_codes": Sequence(Value(dtype="string")),
            "categories": Sequence(Value(dtype="string")),
            "do_crawl": Value("int32"),
            "username": Value("string"),
            "submission_datetime": Value("string"),
        })
        try:
            ds = load_dataset(DATASET_REPO_ID, data_files={"train": "data/*.jsonl"}, features=features)
            df = ds["train"].to_pandas()
            gr.Dataframe(df)
        except ValueError as e:
            print(e)

            gr.Markdown("> Error: Dataset cannot be loaded.")


    with gr.Tab("About"):
        gr.Markdown(ABOUT_TEXT)



if __name__ == "__main__":
    demo.launch()