Spaces:
Runtime error
Runtime error
File size: 11,473 Bytes
fc3814c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
"""
Video Face Manipulation Detection Through Ensemble of CNNs
Image and Sound Processing Lab - Politecnico di Milano
Nicolò Bonettini
Edoardo Daniele Cannas
Sara Mandelli
Luca Bondi
Paolo Bestagini
"""
import argparse
import gc
from collections import OrderedDict
from pathlib import Path
import albumentations as A
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from architectures import fornet
from architectures.fornet import FeatureExtractor
from isplutils import utils, split
from isplutils.data import FrameFaceDatasetTest
def main():
# Args
parser = argparse.ArgumentParser()
parser.add_argument('--testsets', type=str, help='Testing datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--testsplits', type=str, help='Test split', nargs='+', default=['val', 'test'],
choices=['train', 'val', 'test'])
parser.add_argument('--dfdc_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--dfdc_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--ffpp_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--ffpp_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
# Specify trained model path
parser.add_argument('--model_path', type=Path, help='Full path of the trained model', required=True)
# Common params
parser.add_argument('--batch', type=int, help='Batch size to fit in GPU memory', default=128)
parser.add_argument('--workers', type=int, help='Num workers for data loaders', default=6)
parser.add_argument('--device', type=int, help='GPU id', default=0)
parser.add_argument('--debug', action='store_true', help='Debug flag', )
parser.add_argument('--num_video', type=int, help='Number of real-fake videos to test')
parser.add_argument('--results_dir', type=Path, help='Output folder',
default='results/')
parser.add_argument('--override', action='store_true', help='Override existing results', )
args = parser.parse_args()
device = torch.device('cuda:{}'.format(args.device)) if torch.cuda.is_available() else torch.device('cpu')
num_workers: int = args.workers
batch_size: int = args.batch
max_num_videos_per_label: int = args.num_video # number of real-fake videos to test
model_path: Path = args.model_path
results_dir: Path = args.results_dir
debug: bool = args.debug
override: bool = args.override
test_sets = args.testsets
test_splits = args.testsplits
dfdc_df_path = args.dfdc_faces_df_path
ffpp_df_path = args.ffpp_faces_df_path
dfdc_faces_dir = args.dfdc_faces_dir
ffpp_faces_dir = args.ffpp_faces_dir
# get arguments from the model path
face_policy = str(model_path).split('face-')[1].split('_')[0]
patch_size = int(str(model_path).split('size-')[1].split('_')[0])
net_name = str(model_path).split('net-')[1].split('_')[0]
model_name = '_'.join(model_path.with_suffix('').parts[-2:])
# Load net
net_class = getattr(fornet, net_name)
# load model
print('Loading model...')
state_tmp = torch.load(model_path, map_location='cpu')
if 'net' not in state_tmp.keys():
state = OrderedDict({'net': OrderedDict()})
[state['net'].update({'model.{}'.format(k): v}) for k, v in state_tmp.items()]
else:
state = state_tmp
net: FeatureExtractor = net_class().eval().to(device)
incomp_keys = net.load_state_dict(state['net'], strict=True)
print(incomp_keys)
print('Model loaded!')
# val loss per-frame
criterion = nn.BCEWithLogitsLoss(reduction='none')
# Define data transformers
test_transformer = utils.get_transformer(face_policy, patch_size, net.get_normalizer(), train=False)
# datasets and dataloaders (from train_binclass.py)
print('Loading data...')
# Check if paths for DFDC and FF++ extracted faces and DataFrames are provided
for dataset in test_sets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for testing!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for testing!')
splits = split.make_splits(dfdc_df=dfdc_df_path, ffpp_df=ffpp_df_path, dfdc_dir=dfdc_faces_dir,
ffpp_dir=ffpp_faces_dir, dbs={'train': test_sets, 'val': test_sets, 'test': test_sets})
train_dfs = [splits['train'][db][0] for db in splits['train']]
train_roots = [splits['train'][db][1] for db in splits['train']]
val_roots = [splits['val'][db][1] for db in splits['val']]
val_dfs = [splits['val'][db][0] for db in splits['val']]
test_dfs = [splits['test'][db][0] for db in splits['test']]
test_roots = [splits['test'][db][1] for db in splits['test']]
# Output paths
out_folder = results_dir.joinpath(model_name)
out_folder.mkdir(mode=0o775, parents=True, exist_ok=True)
# Samples selection
if max_num_videos_per_label and max_num_videos_per_label > 0:
dfs_out_train = [select_videos(df, max_num_videos_per_label) for df in train_dfs]
dfs_out_val = [select_videos(df, max_num_videos_per_label) for df in val_dfs]
dfs_out_test = [select_videos(df, max_num_videos_per_label) for df in test_dfs]
else:
dfs_out_train = train_dfs
dfs_out_val = val_dfs
dfs_out_test = test_dfs
# Extractions list
extr_list = []
# Append train and validation set first
if 'train' in test_splits:
for idx, dataset in enumerate(test_sets):
extr_list.append(
(dfs_out_train[idx], out_folder.joinpath(dataset + '_train.pkl'), train_roots[idx], dataset + ' TRAIN')
)
if 'val' in test_splits:
for idx, dataset in enumerate(test_sets):
extr_list.append(
(dfs_out_val[idx], out_folder.joinpath(dataset + '_val.pkl'), val_roots[idx], dataset + ' VAL')
)
if 'test' in test_splits:
for idx, dataset in enumerate(test_sets):
extr_list.append(
(dfs_out_test[idx], out_folder.joinpath(dataset + '_test.pkl'), test_roots[idx], dataset + ' TEST')
)
for df, df_path, df_root, tag in extr_list:
if override or not df_path.exists():
print('\n##### PREDICT VIDEOS FROM {} #####'.format(tag))
print('Real frames: {}'.format(sum(df['label'] == False)))
print('Fake frames: {}'.format(sum(df['label'] == True)))
print('Real videos: {}'.format(df[df['label'] == False]['video'].nunique()))
print('Fake videos: {}'.format(df[df['label'] == True]['video'].nunique()))
dataset_out = process_dataset(root=df_root, df=df, net=net, criterion=criterion,
patch_size=patch_size,
face_policy=face_policy, transformer=test_transformer,
batch_size=batch_size,
num_workers=num_workers, device=device, )
df['score'] = dataset_out['score'].astype(np.float32)
df['loss'] = dataset_out['loss'].astype(np.float32)
print('Saving results to: {}'.format(df_path))
df.to_pickle(str(df_path))
if debug:
plt.figure()
plt.title(tag)
plt.hist(df[df.label == True].score, bins=100, alpha=0.6, label='FAKE frames')
plt.hist(df[df.label == False].score, bins=100, alpha=0.6, label='REAL frames')
plt.legend()
del (dataset_out)
del (df)
gc.collect()
if debug:
plt.show()
print('Completed!')
def process_dataset(df: pd.DataFrame,
root: str,
net: FeatureExtractor,
criterion,
patch_size: int,
face_policy: str,
transformer: A.BasicTransform,
batch_size: int,
num_workers: int,
device: torch.device,
) -> dict:
if isinstance(device, (int, str)):
device = torch.device(device)
dataset = FrameFaceDatasetTest(
root=root,
df=df,
size=patch_size,
scale=face_policy,
transformer=transformer,
)
# Preallocate
score = np.zeros(len(df))
loss = np.zeros(len(df))
loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, drop_last=False)
with torch.no_grad():
idx0 = 0
for batch_data in tqdm(loader):
batch_images = batch_data[0].to(device)
batch_labels = batch_data[1].to(device)
batch_samples = len(batch_images)
batch_out = net(batch_images)
batch_loss = criterion(batch_out, batch_labels)
score[idx0:idx0 + batch_samples] = batch_out.cpu().numpy()[:, 0]
loss[idx0:idx0 + batch_samples] = batch_loss.cpu().numpy()[:, 0]
idx0 += batch_samples
out_dict = {'score': score, 'loss': loss}
return out_dict
def select_videos(df: pd.DataFrame, max_videos_per_label: int) -> pd.DataFrame:
"""
Select up to a maximum number of videos
:param df: DataFrame of frames. Required columns: 'video','label'
:param max_videos_per_label: maximum number of real and fake videos
:return: DataFrame of selected frames
"""
# Save random state
st0 = np.random.get_state()
# Set seed for this selection only
np.random.seed(42)
df_fake = df[df.label == True]
fake_videos = df_fake['video'].unique()
selected_fake_videos = np.random.choice(fake_videos, min(max_videos_per_label, len(fake_videos)), replace=False)
df_selected_fake_frames = df_fake[df_fake['video'].isin(selected_fake_videos)]
df_real = df[df.label == False]
real_videos = df_real['video'].unique()
selected_real_videos = np.random.choice(real_videos, min(max_videos_per_label, len(real_videos)), replace=False)
df_selected_real_frames = df_real[df_real['video'].isin(selected_real_videos)]
# Restore random state
np.random.set_state(st0)
return pd.concat((df_selected_fake_frames, df_selected_real_frames), axis=0, verify_integrity=True).copy()
if __name__ == '__main__':
main()
|