Spaces:
Runtime error
Runtime error
File size: 9,280 Bytes
fc3814c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
"""
Video Face Manipulation Detection Through Ensemble of CNNs
Image and Sound Processing Lab - Politecnico di Milano
Nicolò Bonettini
Edoardo Daniele Cannas
Sara Mandelli
Luca Bondi
Paolo Bestagini
"""
from pprint import pprint
from typing import Iterable, List
import albumentations as A
import cv2
import numpy as np
import scipy
import torch
from PIL import Image
from albumentations.pytorch import ToTensorV2
from matplotlib import pyplot as plt
from torch import nn as nn
from torchvision import transforms
def extract_meta_av(path: str) -> (int, int, int):
"""
Extract video height, width and number of frames to index the files
:param path:
:return:
"""
import av
try:
video = av.open(path)
video_stream = video.streams.video[0]
return video_stream.height, video_stream.width, video_stream.frames
except av.AVError as e:
print('Error while reading file: {}'.format(path))
print(e)
return 0, 0, 0
except IndexError as e:
print('Error while processing file: {}'.format(path))
print(e)
return 0, 0, 0
def extract_meta_cv(path: str) -> (int, int, int):
"""
Extract video height, width and number of frames to index the files
:param path:
:return:
"""
try:
vid = cv2.VideoCapture(path)
num_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
return height, width, num_frames
except Exception as e:
print('Error while reading file: {}'.format(path))
print(e)
return 0, 0, 0
def adapt_bb(frame_height: int, frame_width: int, bb_height: int, bb_width: int, left: int, top: int, right: int,
bottom: int) -> (
int, int, int, int):
x_ctr = (left + right) // 2
y_ctr = (bottom + top) // 2
new_top = max(y_ctr - bb_height // 2, 0)
new_bottom = min(new_top + bb_height, frame_height)
new_left = max(x_ctr - bb_width // 2, 0)
new_right = min(new_left + bb_width, frame_width)
return new_left, new_top, new_right, new_bottom
def extract_bb(frame: Image.Image, bb: Iterable, scale: str, size: int) -> Image.Image:
"""
Extract a face from a frame according to the given bounding box and scale policy
:param frame: Entire frame
:param bb: Bounding box (left,top,right,bottom) in the reference system of the frame
:param scale: "scale" to crop a square with size equal to the maximum between height and width of the face, then scale to size
"crop" to crop a fixed square around face center,
"tight" to crop face exactly at the bounding box with no scaling
:param size: size of the face
:return:
"""
left, top, right, bottom = bb
if scale == "scale":
bb_width = int(right) - int(left)
bb_height = int(bottom) - int(top)
bb_to_desired_ratio = min(size / bb_height, size / bb_width) if (bb_width > 0 and bb_height > 0) else 1.
bb_width = int(size / bb_to_desired_ratio)
bb_height = int(size / bb_to_desired_ratio)
left, top, right, bottom = adapt_bb(frame.height, frame.width, bb_height, bb_width, left, top, right,
bottom)
face = frame.crop((left, top, right, bottom)).resize((size, size), Image.BILINEAR)
elif scale == "crop":
# Find the center of the bounding box and cut an area around it of height x width
left, top, right, bottom = adapt_bb(frame.height, frame.width, size, size, left, top, right,
bottom)
face = frame.crop((left, top, right, bottom))
elif scale == "tight":
left, top, right, bottom = adapt_bb(frame.height, frame.width, bottom - top, right - left, left, top, right,
bottom)
face = frame.crop((left, top, right, bottom))
else:
raise ValueError('Unknown scale value: {}'.format(scale))
return face
def showimage(img_tensor: torch.Tensor):
topil = transforms.Compose([
transforms.Normalize(mean=[0, 0, 0, ], std=[1 / 0.229, 1 / 0.224, 1 / 0.225]),
transforms.Normalize(mean=[-0.485, -0.456, -0.406], std=[1, 1, 1]),
transforms.ToPILImage()
])
plt.figure()
plt.imshow(topil(img_tensor))
plt.show()
def make_train_tag(net_class: nn.Module,
face_policy: str,
patch_size: int,
traindb: List[str],
seed: int,
suffix: str,
debug: bool,
):
# Training parameters and tag
tag_params = dict(net=net_class.__name__,
traindb='-'.join(traindb),
face=face_policy,
size=patch_size,
seed=seed
)
print('Parameters')
pprint(tag_params)
tag = 'debug_' if debug else ''
tag += '_'.join(['-'.join([key, str(tag_params[key])]) for key in tag_params])
if suffix is not None:
tag += '_' + suffix
print('Tag: {:s}'.format(tag))
return tag
def get_transformer(face_policy: str, patch_size: int, net_normalizer: transforms.Normalize, train: bool):
# Transformers and traindb
if face_policy == 'scale':
# The loader crops the face isotropically then scales to a square of size patch_size_load
loading_transformations = [
A.PadIfNeeded(min_height=patch_size, min_width=patch_size,
border_mode=cv2.BORDER_CONSTANT, value=0,always_apply=True),
A.Resize(height=patch_size,width=patch_size,always_apply=True),
]
if train:
downsample_train_transformations = [
A.Downscale(scale_max=0.5, scale_min=0.5, p=0.5), # replaces scaled dataset
]
else:
downsample_train_transformations = []
elif face_policy == 'tight':
# The loader crops the face tightly without any scaling
loading_transformations = [
A.LongestMaxSize(max_size=patch_size, always_apply=True),
A.PadIfNeeded(min_height=patch_size, min_width=patch_size,
border_mode=cv2.BORDER_CONSTANT, value=0,always_apply=True),
]
if train:
downsample_train_transformations = [
A.Downscale(scale_max=0.5, scale_min=0.5, p=0.5), # replaces scaled dataset
]
else:
downsample_train_transformations = []
else:
raise ValueError('Unknown value for face_policy: {}'.format(face_policy))
if train:
aug_transformations = [
A.Compose([
A.HorizontalFlip(),
A.OneOf([
A.RandomBrightnessContrast(),
A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=30, val_shift_limit=20),
]),
A.OneOf([
A.ISONoise(),
A.IAAAdditiveGaussianNoise(scale=(0.01 * 255, 0.03 * 255)),
]),
A.Downscale(scale_min=0.7, scale_max=0.9, interpolation=cv2.INTER_LINEAR),
A.ImageCompression(quality_lower=50, quality_upper=99),
], )
]
else:
aug_transformations = []
# Common final transformations
final_transformations = [
A.Normalize(mean=net_normalizer.mean, std=net_normalizer.std, ),
ToTensorV2(),
]
transf = A.Compose(
loading_transformations + downsample_train_transformations + aug_transformations + final_transformations)
return transf
def aggregate(x, deadzone: float, pre_mult: float, policy: str, post_mult: float, clipmargin: float, params={}):
x = x.copy()
if deadzone > 0:
x = x[(x > deadzone) | (x < -deadzone)]
if len(x) == 0:
x = np.asarray([0, ])
if policy == 'mean':
x = np.mean(x)
x = scipy.special.expit(x * pre_mult)
x = (x - 0.5) * post_mult + 0.5
elif policy == 'sigmean':
x = scipy.special.expit(x * pre_mult).mean()
x = (x - 0.5) * post_mult + 0.5
elif policy == 'meanp':
pow_coeff = params.pop('p', 3)
x = np.mean(np.sign(x) * (np.abs(x) ** pow_coeff))
x = np.sign(x) * (np.abs(x) ** (1 / pow_coeff))
x = scipy.special.expit(x * pre_mult)
x = (x - 0.5) * post_mult + 0.5
elif policy == 'median':
x = scipy.special.expit(np.median(x) * pre_mult)
x = (x - 0.5) * post_mult + 0.5
elif policy == 'sigmedian':
x = np.median(scipy.special.expit(x * pre_mult))
x = (x - 0.5) * post_mult + 0.5
elif policy == 'maxabs':
x = np.min(x) if abs(np.min(x)) > abs(np.max(x)) else np.max(x)
x = scipy.special.expit(x * pre_mult)
x = (x - 0.5) * post_mult + 0.5
elif policy == 'avgvoting':
x = np.mean(np.sign(x))
x = (x * post_mult + 1) / 2
elif policy == 'voting':
x = np.sign(np.mean(x * pre_mult))
x = (x - 0.5) * post_mult + 0.5
else:
raise NotImplementedError()
return np.clip(x, clipmargin, 1 - clipmargin)
|