File size: 5,531 Bytes
2de3774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
from shared import path_manager
import modules.async_worker as worker
from pathlib import Path
import json


def create_chat():
    def llama_get_assistants():
        names = []
        folder_path = Path("chatbots")
        for path in folder_path.rglob("*"):
            if path.is_dir():
                try:
                    with open(path / "info.json" , "r", encoding='utf-8') as f:
                        info = json.load(f)
                    names.append((info["name"], str(path)))
                except Exception as e:
                    print(f"ERROR: in {path}: {e}")
                    pass

        names.sort(key=lambda x: x[0].casefold())
        return names

    def gr_llama_get_assistants():
        return {
            llama_assistants: gr.update(
                choices=llama_get_assistants(),
            )
        }

    def _llama_select_assistant(dropdown):
        folder = Path(dropdown)
        try:
            with open(folder / "info.json", "r", encoding='utf-8') as f:
                info = json.load(f)
                if "avatar" not in info:
                    info["avatar"] = folder / "avatar.png"
                if "embed" in info:
                    info["embed"] = json.dumps(info["embed"])
                else:
                    info["embed"] = json.dumps([])
        except Exception as e:
            print(f"ERROR: {dropdown}: {e}")
            info = {
                "name": "Error",
                "greeting": "Error!",
                "avatar": "html/error.png",
                "system": "Everything is broken.",
                "embed": json.dumps([]),
            }
            pass
        info["chatstart"] = [{"role": "assistant", "content": info["greeting"]}]
        return info

    def llama_select_assistant(dropdown):
        info = _llama_select_assistant(dropdown)
        return {
            llama_chat: gr.update(value=info["chatstart"]),
            llama_msg: gr.update(value=""),
            llama_avatar: gr.update(
                value=info["avatar"],
                label=info["name"],
            ),
            llama_system: gr.update(value=info["system"]),
            llama_embed: gr.update(value=info["embed"])
        }


    with gr.Blocks() as app_llama_chat:
        with gr.Row():
            with gr.Column(scale=3), gr.Group():
                # FIXME!!! start value should be read from some info.json
                default_bot = "chatbots/rf_support_troll"
                llama_chat = gr.Chatbot(
                    label="",
                    show_label=False,
                    height=600,
                    type="messages",
                    allow_tags=["think", "thinking"],
                    value=_llama_select_assistant(default_bot)["chatstart"],
                )
                llama_msg = gr.Textbox(
                    show_label=False,
                )
                llama_sent = gr.Textbox(visible=False)
            with gr.Column(scale=2), gr.Group():
                llama_avatar = gr.Image(
                    value=_llama_select_assistant(default_bot)["avatar"],
                    label=_llama_select_assistant(default_bot)["name"],
                    height=400,
                    width=400,
                    show_label=True,
                )
                with gr.Row():
                    llama_assistants = gr.Dropdown(
                        choices=llama_get_assistants(),
                        value=_llama_select_assistant(default_bot)["name"],
                        show_label=False,
                        interactive=True,
                        scale=7,
                    )
                    llama_reload = gr.Button(
                        value="↻",
                        scale=1,
                    )
                llama_system = gr.Textbox(
                    visible=False,
                    value=_llama_select_assistant(default_bot)["system"],
                )
                llama_embed = gr.Textbox(
                    visible=False,
                    value=_llama_select_assistant(default_bot)["embed"],
                )

        def llama_get_text(message):
            return "", message

        def llama_respond(message, system, embed, chat_history):
            chat_history.append({"role": "user", "content": message})

            gen_data = {
                "task_type": "llama",
                "system": system,
                "embed": embed,
                "history": chat_history,
            }

            # Add work
            task_id = worker.add_task(gen_data.copy())

            # Wait for result
            finished = False
            while not finished:
                flag, product = worker.task_result(task_id)
                if flag == "preview":
                    yield product
                elif flag == "results":
                    finished = True

            chat_history.append({"role": "assistant", "content": product})
            yield chat_history

        llama_msg.submit(
            llama_get_text,
            [llama_msg],
            [llama_msg, llama_sent]
        ).then(
            llama_respond,
            [llama_sent, llama_system, llama_embed, llama_chat],
            [llama_chat]
        )

        llama_assistants.select(llama_select_assistant, [llama_assistants], [llama_chat, llama_msg, llama_avatar, llama_system, llama_embed])
        llama_reload.click(gr_llama_get_assistants, None, [llama_assistants])

    return app_llama_chat