File size: 1,713 Bytes
2de3774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python
import os
import random
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
from superprompter.download_models import download_models
from pathlib import Path

global tokenizer, model
script_dir = Path(__file__).resolve().parent  # Script directory
modelDir = script_dir / "model_files"


def load_models():

    if not os.path.isdir(modelDir):
        print("Model files not found. Downloading...\n")
        download_models(modelDir)

    global tokenizer, model
    tokenizer = T5Tokenizer.from_pretrained(modelDir)
    model = T5ForConditionalGeneration.from_pretrained(
        modelDir, torch_dtype=torch.float16
    )


def unload_models():
    global tokenizer, model
    del tokenizer
    del model

    for file in os.listdir(modelDir):
        os.remove(os.path.join(modelDir, file))
    os.rmdir(modelDir)


def answer(
    input_text="",
    max_new_tokens=512,
    repetition_penalty=1.2,
    temperature=0.5,
    top_p=1,
    top_k=1,
    seed=-1,
):

    if seed == -1:
        seed = random.randint(1, 1000000)

    torch.manual_seed(seed)

    if torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
    if torch.cuda.is_available():
        model.to("cuda")

    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )

    dirty_text = tokenizer.decode(outputs[0])
    text = dirty_text.replace("<pad>", "").replace("</s>", "").strip()

    return text