Spaces:
Runtime error
Runtime error
File size: 29,652 Bytes
2de3774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
import gc
import numpy as np
import os
import torch
import traceback
import sys
import modules.controlnet
import modules.async_worker as worker
import modules.prompt_processing as pp
from PIL import Image, ImageOps
from comfy.model_base import BaseModel, SDXL, SD3, Flux, Lumina2
from shared import path_manager, settings
import shared
from pathlib import Path
import json
import random
import comfy.utils
import comfy.model_management
from comfy.sd import load_checkpoint_guess_config, load_state_dict_guess_config
from tqdm import tqdm
from comfy_extras.nodes_model_advanced import ModelSamplingAuraFlow
from nodes import (
CLIPTextEncode,
CLIPSetLastLayer,
ControlNetApplyAdvanced,
EmptyLatentImage,
VAEDecode,
VAEEncode,
VAEEncodeForInpaint,
CLIPLoader,
VAELoader,
)
from comfy.sampler_helpers import (
cleanup_additional_models,
convert_cond,
get_additional_models,
prepare_mask,
)
from comfy_extras.nodes_sd3 import EmptySD3LatentImage
from node_helpers import conditioning_set_values
from comfy.samplers import KSampler
from comfy_extras.nodes_post_processing import ImageScaleToTotalPixels
from comfy_extras.nodes_canny import Canny
from comfy_extras.nodes_freelunch import FreeU
from comfy.model_patcher import ModelPatcher
from comfy.sd import CLIP, VAE
from comfy.utils import load_torch_file
from comfy.sd import save_checkpoint
from modules.pipleline_utils import (
get_previewer,
clean_prompt_cond_caches,
set_timestep_range,
)
#from comfyui_gguf.nodes import gguf_sd_loader, DualCLIPLoaderGGUF, GGUFModelPatcher
#from comfyui_gguf.ops import GGMLOps
from calcuis_gguf.pig import load_gguf_sd, GGMLOps, GGUFModelPatcher
from calcuis_gguf.pig import DualClipLoaderGGUF as DualCLIPLoaderGGUF
class pipeline:
pipeline_type = ["sdxl", "ssd", "sd3", "flux", "lumina2"]
comfy.model_management.DISABLE_SMART_MEMORY = False
comfy.model_management.EXTRA_RESERVED_VRAM = 800 * 1024 * 1024
class StableDiffusionModel:
def __init__(self, unet, vae, clip, clip_vision):
self.unet = unet
self.vae = vae
self.clip = clip
self.clip_vision = clip_vision
def to_meta(self):
if self.unet is not None:
self.unet.model.to("meta")
if self.clip is not None:
self.clip.cond_stage_model.to("meta")
if self.vae is not None:
self.vae.first_stage_model.to("meta")
xl_base: StableDiffusionModel = None
xl_base_hash = ""
xl_base_patched: StableDiffusionModel = None
xl_base_patched_hash = ""
xl_base_patched_extra = set()
xl_controlnet: StableDiffusionModel = None
xl_controlnet_hash = ""
models = []
inference_memory = None
ggml_ops = GGMLOps()
def get_clip_name(self, shortname):
# List of short names and default names for different text encoders
defaults = {
"clip_g": "clip_g.safetensors",
"clip_gemma": "gemma_2_2b_fp16.safetensors",
"clip_l": "clip_l.safetensors",
"clip_t5": "t5-v1_1-xxl-encoder-Q3_K_S.gguf",
}
return settings.default_settings.get(shortname, defaults[shortname] if shortname in defaults else None)
# FIXME move this to separate file
def merge_models(self, name):
print(f"Loading merge: {name}")
self.xl_base_patched = None
self.xl_base_patched_hash = ""
self.xl_base_patched_extra = set()
self.conditions = None
filename = shared.models.get_file("checkpoints", name)
cache_name = str(Path(path_manager.model_paths["cache_path"] / "merges" / Path(name).name).with_suffix(".safetensors"))
if Path(cache_name).exists() and Path(cache_name).stat().st_mtime >= Path(filename).stat().st_mtime:
print(f"Loading cached version:")
self.load_base_model(cache_name)
return
try:
with filename.open() as f:
merge_data = json.load(f)
if 'comment' in merge_data:
print(f" {merge_data['comment']}")
filename = shared.models.get_file("checkpoints", merge_data["base"]["name"])
norm = 1.0
if "models" in merge_data and len(merge_data["models"]) > 0:
weights = sum([merge_data["base"]["weight"]] + [x.get("weight") for x in merge_data["models"]])
if "normalize" in merge_data:
norm = float(merge_data["normalize"]) / weights
else:
norm = 1.0 / weights
print(f"Loading base {merge_data['base']['name']} ({round(merge_data['base']['weight'] * norm * 100)}%)")
with torch.torch.inference_mode():
unet, clip, vae, clip_vision = load_checkpoint_guess_config(str(filename))
self.xl_base = self.StableDiffusionModel(
unet=unet, clip=clip, vae=vae, clip_vision=clip_vision
)
if self.xl_base is not None:
self.xl_base_hash = name
self.xl_base_patched = self.xl_base
self.xl_base_patched_hash = ""
except Exception as e:
self.xl_base = None
print(f"ERROR: {e}")
return
if "models" in merge_data and len(merge_data["models"]) > 0:
device = comfy.model_management.get_torch_device()
mp = ModelPatcher(self.xl_base_patched.unet, device, "cpu", size=1)
w = float(merge_data["base"]["weight"]) * norm
for m in merge_data["models"]:
print(f"Merging {m['name']} ({round(m['weight'] * norm * 100)}%)")
filename = str(shared.models.get_file("checkpoints", m["name"]))
# FIXME add error check?`
with torch.torch.inference_mode():
m_unet, m_clip, m_vae, m_clip_vision = load_checkpoint_guess_config(str(filename))
del m_clip
del m_vae
del m_clip_vision
kp = m_unet.get_key_patches("diffusion_model.")
for k in kp:
mp.model.add_patches({k: kp[k]}, strength_patch=float(m['weight'] * norm), strength_model=w)
del m_unet
w = 1.0
self.xl_base = self.StableDiffusionModel(
unet=mp.model, clip=clip, vae=vae, clip_vision=clip_vision
)
if "loras" in merge_data and len(merge_data["loras"]) > 0:
loras = [(x.get("name"), x.get("weight")) for x in merge_data["loras"]]
self.load_loras(loras)
self.xl_base = self.xl_base_patched
if 'cache' in merge_data and merge_data['cache'] == True:
filename = str(Path(path_manager.model_paths["cache_path"] / "merges" / Path(name).name).with_suffix(".safetensors"))
print(f"Saving merged model: {filename}")
with torch.torch.inference_mode():
save_checkpoint(
filename,
self.xl_base.unet,
clip=self.xl_base.clip,
vae=self.xl_base.vae,
clip_vision=self.xl_base.clip_vision,
metadata={"rf_merge_data": str(merge_data)}
)
return
def load_base_model(self, name, unet_only=False, input_unet=None):
if self.xl_base_hash == name and self.xl_base_patched_extra == set():
return
filename = shared.models.get_file("checkpoints", name)
# If we don't have a filename, get the default.
if filename is None:
base_model = settings.default_settings.get("base_model", "sd_xl_base_1.0_0.9vae.safetensors")
filename = path_manager.get_folder_file_path(
"checkpoints",
base_model,
)
if Path(filename).suffix == '.merge':
self.merge_models(name)
return
if input_unet is None: # Be quiet if we already loaded a unet
print(f"Loading base {'unet' if unet_only else 'model'}: {name}")
self.xl_base = None
self.xl_base_hash = ""
self.xl_base_patched = None
self.xl_base_patched_hash = ""
self.xl_base_patched_extra = set()
self.conditions = None
gc.collect(generation=2)
comfy.model_management.cleanup_models()
comfy.model_management.soft_empty_cache()
unet = None
filename = str(filename) # FIXME use Path and suffix instead?
if filename.endswith(".gguf") or unet_only:
with torch.torch.inference_mode():
try:
if input_unet is not None:
if isinstance(input_unet, ModelPatcher):
unet = input_unet
else:
unet = comfy.sd.load_diffusion_model_state_dict(
input_unet, model_options={"custom_operations": self.ggml_ops}
)
unet = GGUFModelPatcher.clone(unet)
unet.patch_on_device = True
elif filename.endswith(".gguf"):
sd = load_gguf_sd(filename)
unet = comfy.sd.load_diffusion_model_state_dict(
sd, model_options={"custom_operations": self.ggml_ops}
)
unet = GGUFModelPatcher.clone(unet)
unet.patch_on_device = True
else:
model_options = {}
model_options["dtype"] = torch.float8_e4m3fn # FIXME should be a setting
unet = comfy.sd.load_diffusion_model(filename, model_options=model_options)
# Get text encoders (clip) and vae to match the unet
clip_names = []
if isinstance(unet.model, Flux):
clip_names.append(self.get_clip_name("clip_l"))
clip_names.append(self.get_clip_name("clip_t5"))
clip_type = comfy.sd.CLIPType.FLUX
vae_name = settings.default_settings.get("vae_flux", "ae.safetensors")
elif isinstance(unet.model, SD3):
clip_names.append(self.get_clip_name("clip_l"))
clip_names.append(self.get_clip_name("clip_g"))
clip_names.append(self.get_clip_name("clip_t5"))
clip_type = comfy.sd.CLIPType.SD3
vae_name = settings.default_settings.get("vae_sd3", "sd3_vae.safetensors")
elif isinstance(unet.model, Lumina2):
clip_names.append(self.get_clip_name("clip_gemma"))
clip_type = comfy.sd.CLIPType.LUMINA2
vae_name = settings.default_settings.get("vae_lumina2", "lumina2_vae_fp32.safetensors")
unet = ModelSamplingAuraFlow().patch_aura(
model=unet,
shift=settings.default_settings.get("lumina2_shift", 3.0),
)[0]
else: # SDXL
clip_names.append(self.get_clip_name("clip_l"))
clip_names.append(self.get_clip_name("clip_g"))
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
vae_name = settings.default_settings.get("vae_sdxl", "sdxl_vae.safetensors")
clip_paths = []
for clip_name in clip_names:
clip_paths.append(
str(
path_manager.get_folder_file_path(
"clip",
clip_name,
default = os.path.join(path_manager.model_paths["clip_path"], clip_name)
)
)
)
clip_loader = DualCLIPLoaderGGUF()
print(f"Loading CLIP: {clip_names}")
clip = clip_loader.load_patcher(
clip_paths,
clip_type,
clip_loader.load_data(clip_paths)
)
vae_path = path_manager.get_folder_file_path(
"vae",
vae_name,
default = os.path.join(path_manager.model_paths["vae_path"], vae_name)
)
print(f"Loading VAE: {vae_name}")
sd = comfy.utils.load_torch_file(str(vae_path))
vae = comfy.sd.VAE(sd=sd)
clip_vision = None
except Exception as e:
unet = None
traceback.print_exc()
else:
sd = None
unet = None
try:
with torch.torch.inference_mode():
sd = comfy.utils.load_torch_file(filename)
except Exception as e:
# Failed loading
print(f"ERROR: Failed loading {filename}: {e}")
if sd is not None:
aio = load_state_dict_guess_config(sd)
if isinstance(aio, tuple):
unet, clip, vae, clip_vision = aio
if (
isinstance(unet, ModelPatcher) and
isinstance(clip, CLIP) and
isinstance(vae, VAE)
):
# If we got here, we have all models. Dump sd since we don't need it
sd = None
else:
if isinstance(unet, ModelPatcher):
sd = unet
if sd is not None:
# We got something, assume it was a unet
self.load_base_model(
filename,
unet_only=True,
input_unet=sd,
)
return
else:
unet = None
if unet == None:
print(f"Failed to load {name}")
self.xl_base = None
self.xl_base_hash = ""
self.xl_base_patched = None
self.xl_base_patched_hash = ""
else:
self.xl_base = self.StableDiffusionModel(
unet=unet, clip=clip, vae=vae, clip_vision=clip_vision
)
if not (
isinstance(self.xl_base.unet.model, BaseModel) or
isinstance(self.xl_base.unet.model, SDXL) or
isinstance(self.xl_base.unet.model, SD3) or
isinstance(self.xl_base.unet.model, Flux) or
isinstance(self.xl_base.unet.model, Lumina2)
):
print(
f"Model {type(self.xl_base.unet.model)} not supported. RuinedFooocus only support SD1.x/SDXL/SD3/Flux/Lumina2 models as the base model."
)
self.xl_base = None
if self.xl_base is not None:
self.xl_base_hash = name
self.xl_base_patched = self.xl_base
self.xl_base_patched_hash = ""
# self.xl_base_patched.unet.model.to("cuda")
#print(f"Base model loaded: {self.xl_base_hash}")
return
def freeu(self, model, b1, b2, s1, s2):
freeu_model = FreeU()
unet = freeu_model.patch(model=model.unet, b1=b1, b2=b2, s1=s1, s2=s2)[0]
return self.StableDiffusionModel(
unet=unet, clip=model.clip, vae=model.vae, clip_vision=model.clip_vision
)
def load_loras(self, loras):
loaded_loras = []
model = self.xl_base
for name, weight in loras:
if name == "None" or weight == 0:
continue
filename = str(shared.models.get_file("loras", name))
print(f"Loading LoRAs: {name}")
try:
lora = comfy.utils.load_torch_file(filename, safe_load=True)
unet, clip = comfy.sd.load_lora_for_models(
model.unet, model.clip, lora, weight, weight
)
model = self.StableDiffusionModel(
unet=unet,
clip=clip,
vae=model.vae,
clip_vision=model.clip_vision,
)
loaded_loras += [(name, weight)]
except:
print(f"Error loading LoRA: {filename}")
pass
self.xl_base_patched = model
# Uncomment below to enable FreeU shit
# self.xl_base_patched = self.freeu(model, 1.01, 1.02, 0.99, 0.95)
# self.xl_base_patched_hash = str(loras + [1.01, 1.02, 0.99, 0.95])
self.xl_base_patched_hash = str(loras)
print(f"LoRAs loaded: {loaded_loras}")
return
def refresh_controlnet(self, name=None):
if self.xl_controlnet_hash == str(self.xl_controlnet):
return
filename = modules.controlnet.get_model(name)
if filename is not None and self.xl_controlnet_hash != name:
self.xl_controlnet = comfy.controlnet.load_controlnet(str(filename))
self.xl_controlnet_hash = name
print(f"ControlNet model loaded: {self.xl_controlnet_hash}")
if self.xl_controlnet_hash != name:
self.xl_controlnet = None
self.xl_controlnet_hash = None
print(f"Controlnet model unloaded")
conditions = None
def textencode(self, id, text, clip_skip):
update = False
hash = f"{text} {clip_skip}"
if hash != self.conditions[id]["text"]:
if clip_skip > 1:
self.xl_base_patched.clip = CLIPSetLastLayer().set_last_layer(
self.xl_base_patched.clip, clip_skip * -1
)[0]
self.conditions[id]["cache"] = CLIPTextEncode().encode(
clip=self.xl_base_patched.clip, text=text
)[0]
self.conditions[id]["text"] = hash
update = True
return update
@torch.inference_mode()
def process(
self,
gen_data=None,
callback=None,
):
try:
if self.xl_base_patched == None or not (
isinstance(self.xl_base_patched.unet.model, BaseModel) or
isinstance(self.xl_base_patched.unet.model, SDXL) or
isinstance(self.xl_base_patched.unet.model, SD3) or
isinstance(self.xl_base_patched.unet.model, Flux) or
isinstance(self.xl_base_patched.unet.model, Lumina2)
):
print(f"ERROR: Can only use SD1.x, SDXL, SD3, Flux or Lumina2 models")
worker.interrupt_ruined_processing = True
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Can only use SDXL, SD3 or Flux models ...", "html/error.png")
)
return []
except Exception as e:
# Something went very wrong
print(f"ERROR: {e}")
worker.interrupt_ruined_processing = True
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Error when trying to use model ...", "html/error.png")
)
return []
positive_prompt = gen_data["positive_prompt"]
negative_prompt = gen_data["negative_prompt"]
input_image = gen_data["input_image"]
controlnet = modules.controlnet.get_settings(gen_data)
cfg = gen_data["cfg"]
sampler_name = gen_data["sampler_name"]
scheduler = gen_data["scheduler"]
clip_skip = gen_data["clip_skip"]
img2img_mode = False
input_image_pil = None
seed = gen_data["seed"] if isinstance(gen_data["seed"], int) else random.randint(1, 2**32)
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Processing text encoding ...", None)
)
updated_conditions = False
if self.conditions is None:
self.conditions = clean_prompt_cond_caches()
if self.textencode("+", positive_prompt, clip_skip):
updated_conditions = True
if self.textencode("-", negative_prompt, clip_skip):
updated_conditions = True
switched_prompt = []
if "[" in positive_prompt and "]" in positive_prompt:
if controlnet is not None and input_image is not None:
print("ControlNet and [prompt|switching] do not work well together.")
print("ControlNet will only be applied to the first prompt.")
prompt_per_step = pp.prompt_switch_per_step(positive_prompt, gen_data["steps"])
perc_per_step = round(100 / gen_data["steps"], 2)
for i in range(len(prompt_per_step)):
if self.textencode("switch", prompt_per_step[i], clip_skip):
updated_conditions = True
positive_switch = self.conditions["switch"]["cache"]
start_perc = round((perc_per_step * i) / 100, 2)
end_perc = round((perc_per_step * (i + 1)) / 100, 2)
if end_perc >= 0.99:
end_perc = 1
positive_switch = set_timestep_range(
positive_switch, start_perc, end_perc
)
switched_prompt += positive_switch
device = comfy.model_management.get_torch_device()
if controlnet is not None and "type" in controlnet and input_image is not None:
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Powering up ...", None)
)
input_image_pil = input_image.convert("RGB")
input_image = np.array(input_image_pil).astype(np.float32) / 255.0
input_image = torch.from_numpy(input_image)[None,]
input_image = ImageScaleToTotalPixels().upscale(
image=input_image, upscale_method="bicubic", megapixels=1.0
)[0]
self.refresh_controlnet(name=controlnet["type"])
match controlnet["type"].lower():
case "canny":
input_image = Canny().detect_edge(
image=input_image,
low_threshold=float(controlnet["edge_low"]),
high_threshold=float(controlnet["edge_high"]),
)[0]
updated_conditions = True
case "depth":
updated_conditions = True
if self.xl_controlnet:
(
self.conditions["+"]["cache"],
self.conditions["-"]["cache"],
) = ControlNetApplyAdvanced().apply_controlnet(
positive=self.conditions["+"]["cache"],
negative=self.conditions["-"]["cache"],
control_net=self.xl_controlnet,
image=input_image,
strength=float(controlnet["strength"]),
start_percent=float(controlnet["start"]),
end_percent=float(controlnet["stop"]),
)
self.conditions["+"]["text"] = None
self.conditions["-"]["text"] = None
if controlnet["type"].lower() == "img2img":
latent = VAEEncode().encode(
vae=self.xl_base_patched.vae, pixels=input_image
)[0]
force_full_denoise = False
denoise = float(controlnet.get("denoise", controlnet.get("strength")))
img2img_mode = True
if not img2img_mode:
if (
isinstance(self.xl_base.unet.model, SD3) or
isinstance(self.xl_base.unet.model, Flux) or
isinstance(self.xl_base.unet.model, Lumina2)
):
latent = EmptySD3LatentImage().generate(
width=gen_data["width"], height=gen_data["height"], batch_size=1
)[0]
else: # SDXL and unknown
latent = EmptyLatentImage().generate(
width=gen_data["width"], height=gen_data["height"], batch_size=1
)[0]
force_full_denoise = False
denoise = None
if "inpaint_toggle" in gen_data and gen_data["inpaint_toggle"]:
# This is a _very_ ugly workaround since we had to shrink the inpaint image
# to not break the ui.
main_image = Image.open(gen_data["main_view"])
image = np.asarray(main_image)
# image = image[..., :-1]
image = torch.from_numpy(image)[None,] / 255.0
inpaint_view = Image.fromarray(gen_data["inpaint_view"]["layers"][0])
red, green, blue, mask = inpaint_view.split()
mask = mask.resize((main_image.width, main_image.height), Image.Resampling.LANCZOS)
mask = np.asarray(mask)
# mask = mask[:, :, 0]
mask = torch.from_numpy(mask)[None,] / 255.0
latent = VAEEncodeForInpaint().encode(
vae=self.xl_base_patched.vae,
pixels=image,
mask=mask,
grow_mask_by=20,
)[0]
latent_image = latent["samples"]
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
previewer = get_previewer(device, self.xl_base_patched.unet.model.latent_format)
pbar = comfy.utils.ProgressBar(gen_data["steps"])
def callback_function(step, x0, x, total_steps):
y = None
if previewer:
y = previewer.preview(x0, step, total_steps)
if callback is not None:
callback(step, x0, x, total_steps, y)
pbar.update_absolute(step + 1, total_steps, None)
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise.shape, device)
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Prepare models ...", None)
)
if updated_conditions:
conds = {
0: self.conditions["+"]["cache"],
1: self.conditions["-"]["cache"],
}
self.models, self.inference_memory = get_additional_models(
conds,
self.xl_base_patched.unet.model_dtype(),
)
comfy.model_management.load_models_gpu([self.xl_base_patched.unet])
comfy.model_management.load_models_gpu(self.models)
noise = noise.to(device)
latent_image = latent_image.to(device)
# Use FluxGuidance for Flux
positive_cond = switched_prompt if switched_prompt else self.conditions["+"]["cache"]
if isinstance(self.xl_base.unet.model, Flux):
positive_cond = conditioning_set_values(positive_cond, {"guidance": cfg})
cfg = 1.0
kwargs = {
"cfg": cfg,
"latent_image": latent_image,
"start_step": 0,
"last_step": gen_data["steps"],
"force_full_denoise": force_full_denoise,
"denoise_mask": noise_mask,
"sigmas": None,
"disable_pbar": False,
"seed": seed,
"callback": callback_function,
}
sampler = KSampler(
self.xl_base_patched.unet,
steps=gen_data["steps"],
device=device,
sampler=sampler_name,
scheduler=scheduler,
denoise=denoise,
model_options=self.xl_base_patched.unet.model_options,
)
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Start sampling ...", None)
)
samples = sampler.sample(
noise,
positive_cond,
self.conditions["-"]["cache"],
**kwargs,
)
cleanup_additional_models(self.models)
sampled_latent = latent.copy()
sampled_latent["samples"] = samples
if callback is not None:
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"VAE decoding ...", None)
)
decoded_latent = VAEDecode().decode(
samples=sampled_latent, vae=self.xl_base_patched.vae
)[0]
images = [
np.clip(255.0 * y.cpu().numpy(), 0, 255).astype(np.uint8)
for y in decoded_latent
]
if callback is not None:
callback(gen_data["steps"], 0, 0, gen_data["steps"], images[0])
return images
|