Spaces:
Runtime error
Runtime error
File size: 9,216 Bytes
2de3774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
from pathlib import Path
import json
import os
try:
# This can fail during the first run
import requests
from tqdm import tqdm
except:
pass
class PathManager:
DEFAULT_PATHS = {
"path_checkpoints": ["../models/checkpoints/"],
"path_diffusers": "../models/diffusers/",
"path_diffusers_cache": "../models/diffusers_cache/",
"path_loras": ["../models/loras/"],
"path_controlnet": "../models/controlnet/",
"path_vae_approx": "../models/vae_approx/",
"path_vae": "../models/vae/",
"path_preview": "../outputs/preview.jpg",
"path_faceswap": "../models/faceswap/",
"path_upscalers": "../models/upscale_models",
"path_outputs": "../outputs/",
"path_clip": "../models/clip/",
"path_clip_vision": "../models/clip_vision/",
"path_cache": "../cache/",
"path_llm": "../models/llm",
"path_inbox": "../models/inbox",
}
EXTENSIONS = [".pth", ".ckpt", ".bin", ".safetensors", ".gguf", ".merge"]
# Add a dictionary to store file download information
DOWNLOADABLE_FILES = {}
name = None
settings_path = None
paths = None
def __init__(self):
from argparser import args
self.name = args.settings
self.set_settings_path(args.settings)
self.paths = self.load_paths()
self.model_paths = self.get_model_paths()
self.upscaler_filenames = self.get_model_filenames(
self.model_paths["upscaler_path"]
)
pathdb_folder = "modules/pathdb"
files = os.listdir(pathdb_folder)
for file in files:
# Check if the file has a .json extension
if file.endswith('.json'):
file_path = os.path.join(pathdb_folder, file)
try:
# Open and read the JSON file
with open(file_path, 'r') as json_file:
data = json.load(json_file)
self.DOWNLOADABLE_FILES.update(data)
except Exception as e:
print(f"Error reading {file}: {e}")
def set_settings_path(self, subfolder=None):
self.subfolder = subfolder
if self.subfolder in [None, "", "default"]:
path = Path("settings/paths.json")
else:
path = Path(f"settings/{self.subfolder}/paths.json")
if not path.parent.exists():
path.parent.mkdir()
self.settings_path = path
def load_paths(self):
paths = self.DEFAULT_PATHS.copy()
if self.settings_path.exists():
with self.settings_path.open() as f:
paths.update(json.load(f))
for key in self.DEFAULT_PATHS:
if key not in paths:
paths[key] = self.DEFAULT_PATHS[key]
# Fix paths
for key in ['path_checkpoints', 'path_loras']:
if key in paths and not isinstance(paths[key], list): # Some folders should be lists
paths[key] = [paths[key]]
with self.settings_path.open("w") as f:
json.dump(paths, f, indent=2)
return paths
def save_paths(self):
paths = self.paths
# for key in newpaths:
# if key not in paths:
# paths[key] = newpaths[key]
with self.settings_path.open("w") as f:
json.dump(paths, f, indent=2)
return paths
def get_model_paths(self):
return {
"modelfile_path": self.get_abspath_folder(self.paths["path_checkpoints"]),
"diffusers_path": self.get_abspath_folder(self.paths["path_diffusers"]),
"diffusers_cache_path": self.get_abspath_folder(
self.paths["path_diffusers_cache"]
),
"lorafile_path": self.get_abspath_folder(self.paths["path_loras"]),
"controlnet_path": self.get_abspath_folder(self.paths["path_controlnet"]),
"vae_approx_path": self.get_abspath_folder(self.paths["path_vae_approx"]),
"vae_path": self.get_abspath_folder(self.paths["path_vae"]),
"temp_outputs_path": self.get_abspath_folder(self.paths["path_outputs"]),
"temp_preview_path": self.get_abspath(self.paths["path_preview"]),
"faceswap_path": self.get_abspath_folder(self.paths["path_faceswap"]),
"upscaler_path": self.get_abspath_folder(self.paths["path_upscalers"]),
"clip_path": self.get_abspath_folder(self.paths["path_clip"]),
"clip_vision_path": self.get_abspath_folder(self.paths["path_clip_vision"]),
"cache_path": self.get_abspath_folder(self.paths["path_cache"]),
"llm_path": self.get_abspath_folder(self.paths["path_llm"]),
"inbox_path": self.get_abspath_folder(self.paths["path_inbox"]),
}
def get_abspath_folder(self, path):
if isinstance(path, list):
rc = []
for folder in path:
rc.append(self.get_abspath(folder))
else:
rc = self.get_abspath(path)
if not rc.exists():
rc.mkdir(parents=True, exist_ok=True)
return rc
def get_abspath(self, path):
return Path(path) if Path(path).is_absolute() else Path(__file__).parent / path
def get_model_filenames(self, folder_path, cache=None, isLora=False):
folder_path = Path(folder_path)
if not folder_path.is_dir():
raise ValueError(f"{folder_path} is not a valid directory.")
filenames = []
for path in folder_path.rglob("*"):
if path.suffix.lower() in self.EXTENSIONS:
if isLora:
txtcheck = path.with_suffix(".txt")
if txtcheck.exists():
fstats = txtcheck.stat()
if fstats.st_size > 0:
path = path.with_suffix(f"{path.suffix}")
filenames.append(str(path.relative_to(folder_path)))
# Return a sorted list, prepend names with 0 if they are in a folder or 1
# if it is a plain file. This will sort folders above files in the dropdown
return sorted(
filenames,
key=lambda x: (
f"0{x.casefold()}"
if not str(Path(x).parent) == "."
else f"1{x.casefold()}"
),
)
def get_diffusers_filenames(self, folder_path, cache=None, isLora=False):
folder_path = Path(folder_path)
if not folder_path.is_dir():
raise ValueError(f"{folder_path} is not a valid directory.")
filenames = []
for path in folder_path.glob("*/*"):
filenames.append(f"🤗:{path.relative_to(folder_path)}")
return sorted(
filenames,
key=lambda x: (
f"0{x.casefold()}"
if not str(Path(x).parent) == "."
else f"1{x.casefold()}"
),
)
def get_file_path(self, file_key, default=None):
"""
Get the path for a file, downloading it if it doesn't exist.
"""
if file_key not in self.DOWNLOADABLE_FILES:
return default
file_info = self.DOWNLOADABLE_FILES[file_key]
folder = self.paths[file_info["path"]]
if isinstance(folder, list): # folder might be a list of folders
folder = folder[0] # ...select the first one
file_path = (
self.get_abspath(folder) / file_info["filename"]
)
if not file_path.exists():
self.download_file(file_key)
return file_path
def get_folder_file_path(self, folder, filename, default=None):
return self.get_file_path(f"{folder}/{filename}", default=default)
def get_folder_list(self, folder):
result = []
for file in self.DOWNLOADABLE_FILES:
if file.startswith(f"{folder}/"):
result.append(self.DOWNLOADABLE_FILES[file]["filename"])
# FIXME: also list files already in folder
return result
def download_file(self, file_key):
"""
Download a file if it doesn't exist.
"""
file_info = self.DOWNLOADABLE_FILES[file_key]
folder = self.paths[file_info["path"]]
if isinstance(folder, list): # folder might be a list of folders
folder = folder[0] # ...select the first one
file_path = (
self.get_abspath(folder) / file_info["filename"]
)
print(f"Downloading {file_info['url']}...")
response = requests.get(file_info["url"], stream=True)
total_size = int(response.headers.get("content-length", 0))
with open(file_path, "wb") as file, tqdm(
desc=file_info["filename"],
total=total_size,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as progress_bar:
for data in response.iter_content(chunk_size=1024):
size = file.write(data)
progress_bar.update(size)
print(f"Downloaded {file_info['filename']} to {file_path}")
def find_lcm_lora(self):
return self.get_file_path("lcm_lora")
|