Spaces:
Runtime error
Runtime error
File size: 14,717 Bytes
2de3774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import requests
import hashlib
import shutil
import os
import cv2
import json
import threading
import time
from pathlib import Path
import numpy as np
class Models:
civit_workers = []
def civit_update_worker(self, model_type, folder_paths):
from shared import path_manager
try:
import imageio.v3
except:
# Skip updates if we are missing imageio
print(f"Can't find imageio.v3 module: Skip CivitAI update")
return
if str(model_type) in self.civit_workers:
# Already working on this folder
print(f"Skip CivitAI check. Update for {model_type} already running.")
return
if not Path(self.cache_paths[model_type]).is_dir():
print(f"WARNING: Can't find {self.cache_paths[model_type]} Will not update thumbnails.")
return
self.civit_workers.append(str(model_type))
self.ready[model_type] = False
updated = 0
# Quick list
self.names[model_type] = []
for folder in folder_paths:
for path in folder.rglob("*"):
if path.suffix.lower() in self.EXTENSIONS:
# Add to model names
self.names[model_type].append(str(path.relative_to(folder)))
# Return a sorted list, prepend names with 0 if they are in a folder or 1
# if it is a plain file. This will sort folders above files in the dropdown
self.names[model_type] = sorted(
self.names[model_type],
key=lambda x: (
f"0{x.casefold()}"
if not str(Path(x).parent) == "."
else f"1{x.casefold()}"
),
)
self.ready[model_type] = True
if self.offline:
self.civit_workers.remove(str(model_type))
return
if model_type == "inbox" and self.names["inbox"]:
checkpoints = path_manager.model_paths["modelfile_path"]
checkpoints = checkpoints[0] if isinstance(checkpoints, list) else checkpoints
loras = path_manager.model_paths["lorafile_path"]
loras = loras[0] if isinstance(loras, list) else loras
folders = {
"LORA": (loras, self.cache_paths["loras"]),
"LoCon": (loras, self.cache_paths["loras"]),
"Checkpoint": (checkpoints, self.cache_paths["checkpoints"]),
}
# Go though and check previews
for folder in folder_paths:
for path in folder.rglob("*"):
if path.suffix.lower() in self.EXTENSIONS:
# get file name, add cache path change suffix
cache_file = Path(self.cache_paths[model_type] / path.name)
models = self.get_models_by_path(model_type, str(path))
suffixes = [".jpeg", ".jpg", ".png", ".gif"]
has_preview = False
for suffix in suffixes:
thumbcheck = cache_file.with_suffix(suffix)
if Path(thumbcheck).is_file():
has_preview = True
break
if not has_preview:
#print(f"Downloading model thumbnail for {Path(path).name} ({self.get_model_base(models)} - {self.get_model_type(models)})")
self.get_image(models, thumbcheck)
updated += 1
time.sleep(1)
txtcheck = cache_file.with_suffix(".txt")
if model_type == "loras" and not txtcheck.exists():
print(f"Get LoRA keywords for {Path(path).name} ({self.get_model_base(models)} - {self.get_model_type(models)})")
keywords = self.get_keywords(models)
with open(txtcheck, "w") as f:
f.write(", ".join(keywords))
updated += 1
if model_type == "inbox":
name = str(path.relative_to(folder_paths[0])) # FIXME handle if inbox is a list
model = self.get_models_by_path("inbox", name)
filename = self.get_file_from_name("inbox", name)
if model is None:
continue
baseModel = self.get_model_base(model)
folder, cache = folders.get(self.get_model_type(model), [None, None])
if folder is None or baseModel is None:
print(f"Skipping {name} not sure what {self.get_model_type(model)} is.")
continue
# Move model to correct folder
dest = Path(folder) / baseModel
if not dest.exists():
dest.mkdir(parents=True, exist_ok=True)
shutil.move(Path(filename), Path(dest) / name)
# Move cache-files
cache_file = Path(self.cache_paths[model_type] / name)
suffixes = [".json", ".txt", ".jpeg", ".jpg", ".png", ".gif"]
for suffix in suffixes:
cachefile = cache_file.with_suffix(suffix)
if cachefile.is_file():
shutil.move(cachefile, Path(cache) / cachefile.name)
print(f"Moved {name} to {dest}")
if updated > 0:
print(f"CivitAI update for {model_type} done.")
self.civit_workers.remove(str(model_type))
def get_names(self, model_type):
while not self.ready[model_type]:
# Wait until we have read all the filenames
time.sleep(0.2)
return self.names[model_type]
def get_file(self, model_type, name):
# Search the folders for the model
for folder in self.model_dirs[model_type]:
file = Path(folder) / name
if file.is_file():
return file
return None
def update_all_models(self):
for model_type in ["checkpoints", "loras", "inbox"]:
threading.Thread(
target=self.civit_update_worker,
args=(
model_type,
self.model_dirs[model_type],
),
daemon=True,
).start()
def __init__(self, offline=False):
from shared import path_manager, settings
self.offline = offline
self.ready = {
"checkpoints": False,
"loras": False,
"inbox": False,
}
self.names = {
"checkpoints": [],
"loras": [],
"inbox": [],
}
checkpoints = path_manager.model_paths["modelfile_path"]
checkpoints = checkpoints if isinstance(checkpoints, list) else [checkpoints]
loras = path_manager.model_paths["lorafile_path"]
loras = loras if isinstance(loras, list) else [loras]
inbox = path_manager.model_paths["inbox_path"]
inbox = inbox if isinstance(inbox, list) else [inbox]
self.model_dirs = {
"checkpoints": checkpoints,
"loras": loras,
"inbox": inbox,
}
self.cache_paths = {
"checkpoints": Path(path_manager.model_paths["cache_path"] / "checkpoints"),
"loras": Path(path_manager.model_paths["cache_path"] / "loras"),
"inbox": Path(path_manager.model_paths["cache_path"] / "inbox"),
}
self.base_url = "https://civitai.com/api/v1/"
self.headers = {"Content-Type": "application/json"}
self.session = requests.Session()
self.EXTENSIONS = [".pth", ".ckpt", ".bin", ".safetensors", ".gguf"]
self.update_all_models()
def get_file_from_name(self, model_type, model_name):
for folder in self.model_dirs[model_type]:
path = Path(folder) / model_name
if path.is_file():
return path
return None
def model_sha256(self, filename):
print(f"Hashing {filename}")
blksize = 1024 * 1024
hash_sha256 = hashlib.sha256()
try:
with open(filename, 'rb') as f:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
f.close()
return hash_sha256.hexdigest().upper()
except Exception as e:
print(f"model_sha256(): Failed reading {filename}")
print(f"Error: {e}")
return None
def get_models_by_path(self, model_type, path):
data = None
cache_path = Path(self.cache_paths[model_type]) / Path(Path(path).name)
if cache_path.is_dir():
# Give up
return {}
json_path = Path(cache_path).with_suffix(".json")
if json_path.exists():
try:
with open(json_path) as f:
data = json.load(f)
except:
data = None
if data is not None:
return data
if Path(path).suffix == ".merge":
return {"baseModel": "Merge"}
hash = self.model_sha256(path)
url = f"{self.base_url}model-versions/by-hash/{hash}"
try:
response = requests.get(url, headers=self.headers)
response.raise_for_status()
data = response.json()
except requests.exceptions.HTTPError as e:
if response.status_code == 404:
print(f"Warning: Could not find {Path(path).name} on civit.ai")
elif response.status_code == 503:
print("Error: Civit.ai Service Currently Unavailable")
else:
print(f"HTTP Error: {e}")
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
if data is None:
# Create our own data
data = {
"files": [
{
"hashes": {
"SHA256": hash,
}
}
]
}
print(f"Update model data: {json_path}")
with open(json_path, "w") as f:
json.dump(data, f, indent=2)
return data
def get_keywords(self, model):
keywords = model.get("trainedWords", [""])
return keywords
def get_model_base(self, model):
return model.get("baseModel", "Unknown")
def get_model_type(self, model):
res = model.get("model", None)
if res is not None:
res = res.get("type", "Unknown")
else:
res = "Unknown"
return res
def get_image(self, model, path):
from shared import settings
if "baseModel" in model and model["baseModel"] == "Merge":
return
import imageio.v3 as iio
if "model_preview" in settings.default_settings:
opts = settings.default_settings["model_preview"].split(",")
if "caption" in opts:
caption=True
if "nogifzoom" in opts:
nogifzoom=True
if "zoom" in opts:
zoom=True
else:
caption=False
nogifzoom=False
zoom=False
def make_thumbnail(image, text, zoom=False, caption=False):
max = 166 # Max width or height
if image is None:
return None
if zoom:
oh = image.shape[0]
ow = image.shape[1]
scale = max / oh if oh > ow else max / ow
image = cv2.resize(
image,
dsize=(int(ow * scale), int(oh * scale)),
interpolation=cv2.INTER_LANCZOS4,
)
if caption:
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 0.35
thickness = 1
org = (3, 10)
color = (25, 15, 11) # BGR
image = cv2.putText(
image,
text,
org,
font,
fontScale,
color,
thickness*2,
cv2.LINE_AA
)
org = (3, 10)
color = (255, 215, 185) # BGR
image = cv2.putText(
image,
text,
org,
font,
fontScale,
color,
thickness,
cv2.LINE_AA
)
return image
path = path.with_suffix(".jpeg")
caption_text = f"{path.with_suffix('').name}"
image_url = None
for preview in model.get("images", [{}]):
url = preview.get("url")
format = preview.get("type")
if url:
print(f"Updating preview for {caption_text}.")
image_url = url
response = self.session.get(image_url)
if response.status_code != 200:
print(f"WARNING: get_image() for {caption_text} - {response.status_code} : {response.reason}")
break
image = np.asarray(bytearray(response.content), dtype="uint8")
out = make_thumbnail(cv2.imdecode(image, cv2.IMREAD_COLOR), caption_text, caption=caption, zoom=zoom)
if out is not None:
out = cv2.imencode('.jpg', out)[1]
else:
out = response.content
with open(path, "wb") as file:
file.write(out)
if format == "video":
tmp_path = f"{path}.tmp"
shutil.move(path, tmp_path)
video = iio.imiter(tmp_path)
fps = iio.immeta(tmp_path)["fps"]
video_out = []
for i in video:
out = make_thumbnail(i, caption_text, caption=caption, zoom=not nogifzoom)
if out is None:
out = i
video_out.append(out)
iio.imwrite(
str(path.with_suffix(".gif")), video_out, fps=fps, loop=0
)
os.remove(tmp_path)
break
if image_url is None:
shutil.copyfile("html/warning.jpeg", path)
|