Spaces:
Runtime error
Runtime error
File size: 16,060 Bytes
2de3774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import threading
import gc
import torch
import math
import time
import pathlib
from pathlib import Path
buffer = []
outputs = []
results = []
metadatastrings = []
current_task = 0
interrupt_ruined_processing = False
def worker():
global buffer, outputs
import json
import os
import shared
import random
from modules.prompt_processing import process_metadata, process_prompt, parse_loras
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from modules.util import generate_temp_filename, TimeIt, get_checkpoint_hashes, get_lora_hashes
import modules.pipelines
from shared import settings
pipeline = modules.pipelines.update(
{"base_model_name": settings.default_settings.get("base_model")}
)
if not pipeline == None:
pipeline.load_base_model(settings.default_settings.get("base_model"))
def job_start(gen_data):
shared.state["preview_grid"] = None
shared.state["preview_total"] = max(gen_data["image_total"], 1)
shared.state["preview_count"] = 0
def job_stop():
shared.state["preview_grid"] = None
shared.state["preview_total"] = 0
shared.state["preview_count"] = 0
def _process(gen_data):
global results, metadatastrings
gen_data = process_metadata(gen_data)
pipeline = modules.pipelines.update(gen_data)
if pipeline == None:
print(f"ERROR: No pipeline")
return
try:
# See if pipeline wants to pre-parse gen_data
gen_data = pipeline.parse_gen_data(gen_data)
except:
pass
image_number = gen_data["image_number"]
loras = []
for lora_data in gen_data["loras"] if gen_data["loras"] is not None else []:
w, l = lora_data[1].split(" - ", 1)
loras.append((l, float(w)))
parsed_loras, pos_stripped, neg_stripped = parse_loras(
gen_data["prompt"], gen_data["negative"]
)
loras.extend(parsed_loras)
if "silent" not in gen_data:
outputs.append(
[
gen_data["task_id"],
"preview",
(-1, f"Loading base model: {gen_data['base_model_name']}", None),
]
)
gen_data["modelhash"] = pipeline.load_base_model(gen_data["base_model_name"])
if "silent" not in gen_data:
outputs.append([gen_data["task_id"], "preview", (-1, f"Loading LoRA models ...", None)])
pipeline.load_loras(loras)
# FIXME move this into get_perf_options?
if (
gen_data["performance_selection"]
== shared.performance_settings.CUSTOM_PERFORMANCE
):
steps = gen_data["custom_steps"]
else:
perf_options = shared.performance_settings.get_perf_options(
gen_data["performance_selection"]
).copy()
perf_options.update(gen_data)
gen_data = perf_options
steps = gen_data["custom_steps"]
gen_data["steps"] = steps
if (
gen_data["aspect_ratios_selection"]
== shared.resolution_settings.CUSTOM_RESOLUTION
):
width, height = (gen_data["custom_width"], gen_data["custom_height"])
else:
width, height = shared.resolution_settings.aspect_ratios[
gen_data["aspect_ratios_selection"]
]
if "width" in gen_data:
width = gen_data["width"]
else:
gen_data["width"] = width
if "height" in gen_data:
height = gen_data["height"]
else:
gen_data["height"] = height
if gen_data["cn_selection"] == "Img2Img" or gen_data["cn_type"] == "Img2img":
if gen_data["input_image"]:
width = gen_data["input_image"].width
height = gen_data["input_image"].height
else:
print(f"WARNING: CheatCode selected but no Input image selected. Ignoring PowerUp!")
gen_data["cn_selection"] = "None"
gen_data["cn_type"] = "None"
seed = gen_data["seed"]
max_seed = 2**32
if not isinstance(seed, int) or seed < 0:
seed = random.randint(0, max_seed)
seed = seed % max_seed
all_steps = steps * max(image_number, 1)
with open("render.txt") as f:
lines = f.readlines()
status = random.choice(lines)
status = f"{status}"
class InterruptProcessingException(Exception):
pass
def callback(step, x0, x, total_steps, y):
global status, interrupt_ruined_processing
if interrupt_ruined_processing:
shared.state["interrupted"] = True
interrupt_ruined_processing = False
raise InterruptProcessingException()
# If we only generate 1 image, skip the last preview
if (
(not gen_data["generate_forever"])
and shared.state["preview_total"] == 1
and steps == step
):
return
done_steps = i * steps + step
try:
status
except NameError:
status = None
if step % 10 == 0 or status == None:
status = random.choice(lines)
grid_xsize = math.ceil(math.sqrt(shared.state["preview_total"]))
grid_ysize = math.ceil(shared.state["preview_total"] / grid_xsize)
grid_max = max(grid_xsize, grid_ysize)
pwidth = int(width * grid_xsize / grid_max)
pheight = int(height * grid_ysize / grid_max)
if shared.state["preview_grid"] is None:
shared.state["preview_grid"] = Image.new("RGB", (pwidth, pheight))
if y is not None:
if isinstance(y, Image.Image):
image = y
elif isinstance(y, str):
image = Image.open(y)
else:
image = Image.fromarray(y)
grid_xpos = int(
(shared.state["preview_count"] % grid_xsize) * (pwidth / grid_xsize)
)
grid_ypos = int(
math.floor(shared.state["preview_count"] / grid_xsize)
* (pheight / grid_ysize)
)
image = image.resize((int(width / grid_max), int(height / grid_max)))
shared.state["preview_grid"].paste(image, (grid_xpos, grid_ypos))
preview = shared.path_manager.model_paths["temp_preview_path"]
else:
preview = None
shared.state["preview_grid"].save(
shared.path_manager.model_paths["temp_preview_path"],
optimize=True,
quality=35 if step < total_steps else 70,
)
outputs.append(
[
gen_data["task_id"],
"preview",
(
int(
100
* (gen_data["index"][0] + done_steps / all_steps)
/ max(gen_data["index"][1], 1)
),
f"{status} - {step}/{total_steps}",
preview,
),
]
)
# TODO: this should be an "inital ok gen_data" at the beginning of the function
if "input_image" not in gen_data:
gen_data["input_image"] = None
if "main_view" not in gen_data:
gen_data["main_view"] = None
stop_batch = False
for i in range(max(image_number, 1)):
p_txt, n_txt = process_prompt(
gen_data["style_selection"], pos_stripped, neg_stripped, gen_data
)
gen_data["positive_prompt"] = p_txt
gen_data["negative_prompt"] = n_txt
gen_data["seed"] = seed # Update seed
start_step = 0
denoise = None
with TimeIt("Pipeline process"):
try:
imgs = pipeline.process(
gen_data=gen_data,
callback=callback if "silent" not in gen_data else None,
)
except InterruptProcessingException as iex:
stop_batch = True
imgs = []
for x in imgs:
folder=shared.path_manager.model_paths["temp_outputs_path"]
local_temp_filename = generate_temp_filename(
folder=folder,
extension="png",
)
dir_path = Path(local_temp_filename).parent
dir_path.mkdir(parents=True, exist_ok=True)
metadata = None
prompt = {
"Prompt": p_txt,
"Negative": n_txt,
"steps": steps,
"cfg": gen_data["cfg"],
"width": width,
"height": height,
"seed": seed,
"sampler_name": gen_data["sampler_name"],
"scheduler": gen_data["scheduler"],
"base_model_name": gen_data["base_model_name"],
"base_model_hash": get_checkpoint_hashes(gen_data["base_model_name"])['SHA256'],
"loras": [[f"{get_lora_hashes(lora[0])['SHA256']}", f"{lora[1]} - {lora[0]}"] for lora in loras],
"start_step": start_step,
"denoise": denoise,
"clip_skip": gen_data["clip_skip"],
"software": "RuinedFooocus",
}
metadata = PngInfo()
# if True:
# def handle_whitespace(string: str):
# return (
# string.strip()
# .replace("\n", " ")
# .replace("\r", " ")
# .replace("\t", " ")
# )
# comment = f"{handle_whitespace(p_txt)}\nNegative prompt: {handle_whitespace(n_txt)}\nSteps: {round(steps, 1)}, Sampler: {gen_data['sampler_name']} {gen_data['scheduler']}, CFG Scale: {float(gen_data['cfg'])}, Seed: {seed}, Size: {width}x{height}, Model hash: {model_hash(Path(shared.path_manager.model_paths['modelfile_path']) / gen_data['base_model_name'])}, Model: {gen_data['base_model_name']}, Version: RuinedFooocus"
# metadata.add_text("parameters", comment)
# else:
metadata.add_text("parameters", json.dumps(prompt))
if "preview_count" not in shared.state:
shared.state["preview_count"] = 0
shared.state["preview_count"] += 1
if isinstance(x, str) or isinstance(
x, (pathlib.WindowsPath, pathlib.PosixPath)
):
local_temp_filename = x
else:
if not isinstance(x, Image.Image):
x = Image.fromarray(x)
x.save(local_temp_filename, pnginfo=metadata)
try:
metadata = {
"parameters": json.dumps(prompt),
"file_path": str(Path(local_temp_filename).relative_to(folder))
}
if "browser" in shared.shared_cache:
shared.shared_cache["browser"].add_image(
local_temp_filename,
Path(local_temp_filename).relative_to(folder),
metadata,
commit=True
)
except:
pass
results.append(local_temp_filename)
metadatastrings.append(json.dumps(prompt))
shared.state["last_image"] = local_temp_filename
seed += 1
if stop_batch:
break
return
def reset_preview():
shared.state["preview_grid"] = None
shared.state["preview_count"] = 0
def process(gen_data):
global results, metadatastrings
# Check some needed items
if not "image_total" in gen_data:
gen_data["image_total"] = 1
if not "generate_forever" in gen_data:
gen_data["generate_forever"] = False
shared.state["preview_total"] = max(gen_data["image_total"], 1)
while True:
reset_preview()
results = []
gen_data["index"] = (0, (gen_data["image_total"]))
if isinstance(gen_data["prompt"], list):
tmp_data = gen_data.copy()
for prompt in gen_data["prompt"]:
tmp_data["prompt"] = prompt
if gen_data["generate_forever"]:
reset_preview()
_process(tmp_data)
if shared.state["interrupted"]:
break
tmp_data["index"] = (tmp_data["index"][0] + 1, tmp_data["index"][1])
else:
gen_data["index"] = (0, 1)
_process(gen_data)
metadatastrings = []
if not (gen_data["generate_forever"] and shared.state["interrupted"] == False):
break
# Prepend preview-grid (maybe)
if (
"preview_grid" in shared.state and
shared.state["preview_grid"] is not None
and shared.state["preview_total"] > 1
and ("show_preview" not in gen_data or gen_data["show_preview"] == True)
and not gen_data["generate_forever"]
):
results = [
shared.path_manager.model_paths["temp_preview_path"]
] + results
outputs.append([gen_data["task_id"], "results", results])
def txt2txt_process(gen_data):
pipeline = modules.pipelines.update(gen_data)
if pipeline == None:
print(f"ERROR: No pipeline")
return
try:
# See if pipeline wants to pre-parse gen_data
gen_data = pipeline.parse_gen_data(gen_data)
except:
pass
results = pipeline.process(gen_data)
outputs.append([gen_data["task_id"], "results", results])
def handler(gen_data):
match gen_data["task_type"]:
case "process":
process(gen_data)
case "api_process":
gen_data["silent"] = True
process(gen_data)
case "llama":
txt2txt_process(gen_data)
case _:
print(f"WARN: Unknown task_type: {gen_data['task_type']}")
while True:
time.sleep(0.01)
if len(buffer) > 0:
task = buffer.pop(0)
handler(task)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# Use this to add a task, then use task_result() to get data from the pipeline
def add_task(gen_data):
global current_task, buffer
current_task += 1
task_id = current_task
gen_data["task_id"] = task_id
buffer.append(gen_data.copy())
return task_id
# Pipelines use this to add results
def add_result(task_id, flag, product):
global outputs
outputs.append([task_id, flag, product])
# Use the task_id from add_task() to wait for data
def task_result(task_id):
global outputs
while True:
if not outputs:
time.sleep(0.1)
continue
if outputs[0][0] == task_id:
id, flag, product = outputs.pop(0)
break
return (flag, product)
threading.Thread(target=worker, daemon=True).start()
|