File size: 4,975 Bytes
5f58699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""Metrics utilities."""

from __future__ import annotations

from typing import Iterable

import numpy as np
from numpy.typing import ArrayLike
from sklearn.metrics import (
    accuracy_score,
    average_precision_score,
    brier_score_loss,
    f1_score,
    recall_score,
    precision_score,
    roc_auc_score,
)


def compute_metrics(
    y_true: Iterable[float],
    y_score: Iterable[float],
    *,
    threshold: float = 0.5,
) -> dict[str, float]:
    """Compute classification metrics from scores and labels."""

    y_true_arr = np.asarray(list(y_true), dtype=float)
    y_score_arr = np.asarray(list(y_score), dtype=float)
    y_pred = (y_score_arr >= threshold).astype(int)

    metrics: dict[str, float] = {}

    try:
        metrics["roc_auc"] = float(roc_auc_score(y_true_arr, y_score_arr))
    except ValueError:
        metrics["roc_auc"] = float("nan")

    try:
        metrics["pr_auc"] = float(average_precision_score(y_true_arr, y_score_arr))
    except ValueError:
        metrics["pr_auc"] = float("nan")

    metrics["accuracy"] = float(accuracy_score(y_true_arr, y_pred))
    metrics["f1"] = float(f1_score(y_true_arr, y_pred, zero_division=0))
    metrics["f1_positive"] = float(f1_score(y_true_arr, y_pred, pos_label=1, zero_division=0))
    metrics["f1_negative"] = float(f1_score(y_true_arr, y_pred, pos_label=0, zero_division=0))
    metrics["sensitivity"] = float(recall_score(y_true_arr, y_pred, zero_division=0))
    # Specificity is recall on the negative class
    metrics["specificity"] = float(
        recall_score(1 - y_true_arr, 1 - y_pred, zero_division=0)
    )
    metrics["precision"] = float(precision_score(y_true_arr, y_pred, zero_division=0))
    metrics["positive_rate"] = float(y_true_arr.mean()) if y_true_arr.size else float("nan")
    metrics["brier"] = float(brier_score_loss(y_true_arr, y_score_arr))
    ece, mce = _calibration_errors(y_true_arr, y_score_arr)
    metrics["ece"] = float(ece)
    metrics["mce"] = float(mce)
    return metrics


def _calibration_errors(
    y_true: np.ndarray,
    y_score: np.ndarray,
    n_bins: int = 15,
) -> tuple[float, float]:
    if y_true.size == 0:
        return float("nan"), float("nan")

    # Clamp scores to [0, 1] to avoid binning issues when calibrators overshoot
    scores = np.clip(y_score, 0.0, 1.0)
    bins = np.linspace(0.0, 1.0, n_bins + 1)
    bin_indices = np.digitize(scores, bins[1:-1], right=True)

    total = y_true.size
    ece = 0.0
    mce = 0.0
    for bin_idx in range(n_bins):
        mask = bin_indices == bin_idx
        if not np.any(mask):
            continue
        bin_scores = scores[mask]
        bin_true = y_true[mask]
        confidence = float(bin_scores.mean())
        accuracy = float(bin_true.mean())
        gap = abs(confidence - accuracy)
        weight = float(mask.sum()) / float(total)
        ece += weight * gap
        mce = max(mce, gap)

    return ece, mce


def bootstrap_metric_intervals(
    y_true: ArrayLike,
    y_score: ArrayLike,
    *,
    n_bootstrap: int = 200,
    alpha: float = 0.05,
    threshold: float = 0.5,
    random_state: int | None = 42,
) -> dict[str, dict[str, float]]:
    """Estimate bootstrap confidence intervals for core metrics.

    Parameters
    ----------
    y_true, y_score:
        Arrays of ground-truth labels and probability scores.
    n_bootstrap:
        Number of bootstrap resamples; set to ``0`` to disable.
    alpha:
        Two-sided confidence level (default ``0.05`` gives 95% CI).
    threshold:
        Decision threshold passed to :func:`compute_metrics`.
    random_state:
        Seed controlling the bootstrap sampler.
    """

    if n_bootstrap <= 0:
        return {}

    y_true_arr = np.asarray(y_true, dtype=float)
    y_score_arr = np.asarray(y_score, dtype=float)
    n = y_true_arr.size
    if n == 0:
        return {}

    rng = np.random.default_rng(random_state)
    collected: dict[str, list[float]] = {}

    for _ in range(n_bootstrap):
        indices = rng.integers(0, n, size=n)
        resampled_true = y_true_arr[indices]
        resampled_score = y_score_arr[indices]
        if np.unique(resampled_true).size < 2:
            continue
        metrics = compute_metrics(resampled_true, resampled_score, threshold=threshold)
        for metric_name, value in metrics.items():
            collected.setdefault(metric_name, []).append(value)

    lower_q = alpha / 2.0
    upper_q = 1.0 - lower_q
    summary: dict[str, dict[str, float]] = {}
    for metric_name, values in collected.items():
        arr = np.asarray(values, dtype=float)
        valid = arr[~np.isnan(arr)]
        if valid.size == 0:
            continue
        lower = float(np.nanquantile(valid, lower_q))
        upper = float(np.nanquantile(valid, upper_q))
        median = float(np.nanmedian(valid))
        summary[metric_name] = {
            "ci_lower": lower,
            "ci_upper": upper,
            "ci_median": median,
        }

    return summary