Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,287 Bytes
c0a944c 08d394e 68fe31b 2e0e7ea ec95142 c0a944c 2e6c9fd c0a944c 3043708 abdc143 3043708 3d60426 5cf1b23 bc6a876 5cf1b23 c0a944c 5cf1b23 37c3308 c0a944c af4bca2 c0a944c 3043708 c0a944c af4bca2 c0a944c 3043708 c0a944c fdb9835 c0a944c 5cf1b23 c0a944c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import spaces
import subprocess
import os
subprocess.run(
'pip install flash-attn --no-build-isolation',
shell=True,
env={**os.environ, "FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}
)
# subprocess.run('FLASH_ATTENTION_SKIP_CUDA_BUILD=TRUE pip install flash-attn --no-build-isolation', shell=True)
# subprocess.run('pip install flash-attn==2.2.0 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# subprocess.run('git clone https://github.com/Dao-AILab/flash-attention.git && cd flash-attention && pip install flash-attn . --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "False"}, shell=True)
import tempfile
import random
import shutil
import pickle
import gradio as gr
import soundfile as sf
from pathlib import Path
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from infer import load_model, eval_model
from spkr import SpeakerEmbedding
@spaces.GPU
def spkr_model_init():
spkr_model = SpeakerEmbedding(device="cpu")
return spkr_model
spkr_model = spkr_model_init()
spkr_model.model.to("cuda")
spkr_model.device = "cuda"
model, tokenizer, tokenizer_voila, model_type = load_model("maitrix-org/Voila-chat", "maitrix-org/Voila-Tokenizer")
model = model.to("cuda")
tokenizer_voila.to("cuda")
default_ref_file = "examples/character_ref_emb_demo.pkl"
default_ref_name = "Homer Simpson"
million_voice_ref_file = hf_hub_download(repo_id="maitrix-org/Voila-million-voice", filename="character_ref_emb_chunk0.pkl", repo_type="dataset")
instruction = "You are a smart AI agent created by Maitrix.org."
save_path = os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir())
intro = """**Voila**
For more demos, please goto [https://voila.maitrix.org](https://voila.maitrix.org)."""
default_ref_emb_mask_list = pickle.load(open(default_ref_file, "rb"))
million_voice_ref_emb_mask_list = pickle.load(open(million_voice_ref_file, "rb"))
@spaces.GPU
def get_ref_embs(ref_audio):
wav, sr = torchaudio.load(ref_audio)
ref_embs = spkr_model(wav, sr).cpu()
return ref_embs
def delete_directory(request: gr.Request):
if not request.session_hash:
return
user_dir = Path(f"{save_path}/{str(request.session_hash)}")
if user_dir.exists():
shutil.rmtree(str(user_dir))
def add_message(history, message):
history.append({"role": "user", "content": {"path": message}})
return history, gr.Audio(value=None), gr.Button(interactive=False)
@spaces.GPU
def call_bot(history, ref_embs, request: gr.Request):
formated_history = {
"instruction": instruction,
"conversations": [{'from': item["role"], 'audio': {"file": item["content"][0]}} for item in history],
}
formated_history["conversations"].append({"from": "assistant"})
print(formated_history)
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="cpu")
ref_embs_mask = torch.tensor([1], device="cpu")
ref_embs.to("cuda")
ref_embs_mask.to("cuda")
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_aiao", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
if 'audio' in out:
wav, sr = out['audio']
user_dir = Path(f"{save_path}/{str(request.session_hash)}")
user_dir.mkdir(exist_ok=True)
save_name = f"{user_dir}/{len(history)}.wav"
sf.write(save_name, wav, sr)
history.append({"role": "assistant", "content": {"path": save_name}})
else:
history.append({"role": "assistant", "content": {"text": out['text']}})
return history
@spaces.GPU
def run_tts(text, ref_embs):
formated_history = {
"instruction": "",
"conversations": [{'from': "user", 'text': text}],
}
formated_history["conversations"].append({"from": "assistant"})
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="cpu")
ref_embs_mask = torch.tensor([1], device="cpu")
ref_embs.to("cuda")
ref_embs_mask.to("cuda")
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_tts", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
if 'audio' in out:
wav, sr = out['audio']
return (sr, wav)
else:
raise Exception("No audio output")
@spaces.GPU
def run_asr(audio):
formated_history = {
"instruction": "",
"conversations": [{'from': "user", 'audio': {"file": audio}}],
}
formated_history["conversations"].append({"from": "assistant"})
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_asr", formated_history, None, None, max_new_tokens=512)
if 'text' in out:
return out['text']
else:
raise Exception("No text output")
def markdown_ref_name(ref_name):
return f"### Current voice id: {ref_name}"
def random_million_voice():
voice_id = random.choice(list(million_voice_ref_emb_mask_list.keys()))
return markdown_ref_name(voice_id), million_voice_ref_emb_mask_list[voice_id]
def get_ref_modules(cur_ref_embs):
with gr.Row() as ref_row:
with gr.Row():
current_ref_name = gr.Markdown(markdown_ref_name(default_ref_name))
with gr.Row() as ref_name_row:
with gr.Column(scale=2, min_width=160):
ref_name_dropdown = gr.Dropdown(
choices=list(default_ref_emb_mask_list.keys()),
value=default_ref_name,
label="Reference voice",
min_width=160,
)
with gr.Column(scale=1, min_width=80):
random_ref_button = gr.Button(
"Random from Million Voice", size="md",
)
with gr.Row(visible=False) as ref_audio_row:
with gr.Column(scale=2, min_width=80):
ref_audio = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
show_label=False,
min_width=80,
)
with gr.Column(scale=1, min_width=80):
change_ref_button = gr.Button(
"Change voice",
interactive=False,
min_width=80,
)
ref_name_dropdown.change(
lambda x: (markdown_ref_name(x), default_ref_emb_mask_list[x]),
ref_name_dropdown,
[current_ref_name, cur_ref_embs]
)
random_ref_button.click(
random_million_voice,
None,
[current_ref_name, cur_ref_embs],
)
ref_audio.input(lambda: gr.Button(interactive=True), None, change_ref_button)
# If custom ref voice checkbox is checked, show the Audio component to record or upload a reference voice
custom_ref_voice = gr.Checkbox(label="Use custom voice", value=False)
# Checked: enable audio and button
# Unchecked: disable audio and button
def custom_ref_voice_change(x, cur_ref_embs, cur_ref_embs_mask):
if not x:
cur_ref_embs = default_ref_emb_mask_list[default_ref_name]
return [gr.Row(visible=not x), gr.Audio(value=None), gr.Row(visible=x), markdown_ref_name("Custom voice"), cur_ref_embs]
custom_ref_voice.change(
custom_ref_voice_change,
[custom_ref_voice, cur_ref_embs],
[ref_name_row, ref_audio, ref_audio_row, current_ref_name, cur_ref_embs]
)
# When change ref button is clicked, get the reference voice and update the reference voice state
change_ref_button.click(
lambda: gr.Button(interactive=False), None, [change_ref_button]
).then(
get_ref_embs, ref_audio, cur_ref_embs
)
return ref_row
def get_chat_tab():
cur_ref_embs = gr.State(default_ref_emb_mask_list[default_ref_name])
with gr.Row() as chat_tab:
with gr.Column(scale=1):
ref_row = get_ref_modules(cur_ref_embs)
# Voice chat input
chat_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
show_label=False,
)
submit = gr.Button("Submit", interactive=False)
gr.Markdown(intro)
with gr.Column(scale=9):
chatbot = gr.Chatbot(
elem_id="chatbot",
type="messages",
bubble_full_width=False,
scale=1,
show_copy_button=False,
avatar_images=(
None, # os.path.join("files", "avatar.png"),
None, # os.path.join("files", "avatar.png"),
),
)
chat_input.input(lambda: gr.Button(interactive=True), None, submit)
submit.click(
add_message, [chatbot, chat_input], [chatbot, chat_input, submit]
).then(
call_bot, [chatbot, cur_ref_embs], chatbot, api_name="bot_response"
)
return chat_tab
def get_tts_tab():
cur_ref_embs = gr.State(default_ref_emb_mask_list[default_ref_name])
with gr.Row() as tts_tab:
with gr.Column(scale=1):
ref_row = get_ref_modules(cur_ref_embs)
gr.Markdown(intro)
with gr.Column(scale=9):
tts_output = gr.Audio(label="TTS output", interactive=False)
with gr.Row():
text_input = gr.Textbox(label="Text", placeholder="Text to TTS")
submit = gr.Button("Submit")
submit.click(
run_tts, [text_input, cur_ref_embs], tts_output
)
return tts_tab
def get_asr_tab():
with gr.Row() as asr_tab:
with gr.Column():
asr_input = gr.Audio(
label="ASR input",
sources=["microphone", "upload"],
type="filepath",
)
submit = gr.Button("Submit")
gr.Markdown(intro)
with gr.Column():
asr_output = gr.Textbox(label="ASR output", interactive=False)
submit.click(
run_asr, [asr_input], asr_output
)
return asr_tab
with gr.Blocks(fill_height=True) as demo:
with gr.Tab("Chat"):
chat_tab = get_chat_tab()
with gr.Tab("TTS"):
tts_tab = get_tts_tab()
with gr.Tab("ASR"):
asr_tab = get_asr_tab()
demo.unload(delete_directory)
if __name__ == "__main__":
demo.launch()
|