File size: 3,990 Bytes
846f032
4375b7f
4e683ec
76a154f
 
 
b1c12fa
76a154f
d534002
4e683ec
76a154f
 
4375b7f
76a154f
4e683ec
dee8422
76a154f
dee8422
76a154f
 
 
 
 
ea3f2b3
98df5b4
76a154f
4e683ec
7c779c2
d534002
4e683ec
e9816b5
76a154f
 
5229350
76a154f
 
4e683ec
76a154f
4e683ec
27319be
4e683ec
 
 
 
846f032
4e683ec
846f032
4e683ec
846f032
 
4e683ec
318864b
6111f2c
 
 
 
4e683ec
3f60a5e
4e683ec
6111f2c
4e683ec
 
 
 
 
 
 
 
 
 
 
76a154f
4e683ec
 
 
 
76a154f
 
4e683ec
 
 
a400f4b
4e683ec
 
76a154f
 
 
 
4e683ec
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
 
4e683ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7b027
 
 
 
4e683ec
846f032
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
User
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Starling-LM-7B-beta

This Space demonstrates [Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) by Nexusflow.

"""


if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "mahiatlinux/MasherAI-v6-7B"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False


@spaces.GPU(enable_queue=True)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.1,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"from": "human", "value": "You are an AI assistant."})
    for user, assistant in chat_history:
        conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}])
    conversation.append({"from": "human", "value": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()