File size: 14,415 Bytes
c2f4c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 142,
   "id": "ae2a25b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dotenv import load_dotenv\n",
    "from IPython.display import Markdown\n",
    "from openai import OpenAI\n",
    "from pypdf import PdfReader\n",
    "import os\n",
    "import gradio as gr\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 136,
   "id": "2eb947db",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 136,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 137,
   "id": "df80c9c8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Api key for openai is found and starts with: sk-proj-\n",
      "APi key for groqai is found and starts with: gsk_Vopn\n"
     ]
    }
   ],
   "source": [
    "openai = os.getenv(\"OPENAI_API_KEY\")\n",
    "groqai = os.getenv(\"groq_api_key\")\n",
    "\n",
    "if openai:\n",
    "    print(f\"Api key for openai is found and starts with: {openai[:8]}\")\n",
    "else:\n",
    "    print(\"key noy found.Check guide\")\n",
    "if groqai:\n",
    "    print(f\"APi key for groqai is found and starts with: {groqai[:8]}\")\n",
    "else:\n",
    "    print(\"groq api key not found\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "id": "15823b9e",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
    "    summary = f.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 146,
   "id": "cb071934",
   "metadata": {},
   "outputs": [],
   "source": [
    "reader = PdfReader(\"me/Profile.pdf\")\n",
    "\n",
    "linkedin= \"\"\n",
    "for page in reader.pages:\n",
    "    text = page.extract_text()\n",
    "    if text:\n",
    "        linkedin += text\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ec4be66",
   "metadata": {},
   "outputs": [],
   "source": [
    "name = \"Oluwatosin\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 147,
   "id": "77dbbe48",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = f\"You are asking question about {name} website,\\\n",
    "particularly questions related to {name} career , background, skills and experience.\\\n",
    "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
    "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
    "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "If you don't know the answer, say so.\"\n",
    "\n",
    "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 149,
   "id": "0520c483",
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
    "def chat(message, history):\n",
    "\n",
    "    message = [{\"role\":\"system\",\"content\":system_prompt}] + history + [{\"role\":\"user\",\"content\":message}]\n",
    "\n",
    "    response = openai.chat.completions.create(\n",
    "        model = \"gpt-4o-mini\",\n",
    "        messages = message\n",
    "    )\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 152,
   "id": "f259aa57",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7873\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7873/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 152,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f1b9e902",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Time to evaluate the model - Aim is to build a Multi-LLM pipeline\n",
    "#We will use the groqapi to evaluate the openai model\n",
    "\n",
    "#First import a pydantc library and a basemodel class\n",
    "\n",
    "from pydantic import BaseModel\n",
    "\n",
    "class Evaluation(BaseModel):\n",
    "    is_acceptable: bool\n",
    "    feedback: str"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 154,
   "id": "b58324ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "#create an evaluator variable\n",
    "\n",
    "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
    "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
    "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
    "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
    "\n",
    "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 155,
   "id": "ae60c71f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluator_user_prompt(reply, message, history):\n",
    "    user_prompt = f\"Here's the conversation between the user and the agent:\\n\\n{history}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest message from the user:\\n\\n{message}\\n\\n\"\n",
    "    user_prompt +=f\"Here's the latest response from the agent:\\n\\n{reply}\\n\\n\"\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 156,
   "id": "5ce823c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "#import and set enviroment for the groqai\n",
    "\n",
    "groqapi = OpenAI(api_key=groqai,\n",
    "                base_url=\"https://api.groq.com/openai/v1\"\n",
    "                )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d45762b",
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluate(reply, message, history) -> Evaluation:\n",
    "    messages = [{\"role\":\"system\",\"content\":evaluator_system_prompt}] + [{\"role\":\"user\",\"content\":evaluator_user_prompt(reply,message,history)}]\n",
    "    response = groqapi.chat.completions.create(\n",
    "        model=\"llama3-8b-8192\",\n",
    "        messages = messages,\n",
    "        #response_format=Evaluation\n",
    "    )\n",
    "\n",
    "    raw_content = response.choices[0].message.content\n",
    "\n",
    "    try:\n",
    "        # If response is a JSON string: {\"is_acceptable\": true, \"feedback\": \"...\"}\n",
    "        #using this deprectaed - evaluation = Evaluation.parse_raw(raw_content) - deprecated\n",
    "        evaluation = Evaluation.model_validate_json(raw_content)\n",
    "    except:\n",
    "        # Otherwise, fallback to plain text evaluation if it's not JSON\n",
    "        evaluation = Evaluation(\n",
    "            is_acceptable=\"acceptable\" in raw_content.lower(),\n",
    "            feedback=raw_content\n",
    "        )\n",
    "\n",
    "    return evaluation\n",
    "\n",
    "\n",
    "    #return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 180,
   "id": "1244b136",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [{\"role\":\"system\", \"content\":\"system_prompt\"}] + [{\"role\":\"user\", \"content\":\"do you hold a patent\"}]\n",
    "response = openai.chat.completions.create(\n",
    "    model = \"gpt-4o-mini\",\n",
    "    messages = messages\n",
    ")\n",
    "\n",
    "reply = response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 181,
   "id": "421c95ff",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Evaluation(is_acceptable=True, feedback='I evaluate the latest response from the agent as ACCEPTABLE.\\n\\nThe response is well-structured, concise, and directly addresses the user\\'s question. The agent acknowledges that they don\\'t hold a patent, which is an honest and clear answer. Additionally, the agent proactively offers to provide information on patents, application processes, or discuss patent law if the user has further questions, showing their willingness to engage and be helpful.\\n\\nFeedback:\\nThe response effectively addresses the user\\'s query, and the agent\\'s tone is professional and engaging. However, to further improve, the agent could consider adding a brief sentence or phrase to emphasize their expertise in the field of Data and AI, such as \"As a Data and AI Practitioner, I can provide insights on the patent process in my area of specialization.\" This would help to reinforce their credibility and expertise while maintaining the response\\'s overall length.')"
      ]
     },
     "execution_count": 181,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "evaluate(reply,\"do you hold a patent?\",messages[:1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 182,
   "id": "2cf1d9c2",
   "metadata": {},
   "outputs": [],
   "source": [
    "def rerun(reply,message,history,feedback):\n",
    "\n",
    "    updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
    "    updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
    "    updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
    "    messages = [{\"role\":\"system\", \"content\":updated_system_prompt}] + history + [{\"role\":\"user\",\"content\":message}]\n",
    "    response = openai.chat.completions.create(\n",
    "        model = \"gpt-4o-mini\",\n",
    "        messages = messages\n",
    "    )\n",
    "    response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 191,
   "id": "0f714a8a",
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    if \"patent\" not in message:\n",
    "        system = system_prompt + \"\\n\\n Everything in the reply needs to be in pig latin.It is mandatory that you respond and only entirely in pig latin\"\n",
    "    else:\n",
    "        system = system_prompt\n",
    "    messages = [{\"role\":\"system\",\"content\":system}]+ history + [{\"role\":\"user\", \"content\":message}]\n",
    "    response = openai.chat.completions.create(\n",
    "        model=\"gpt-4o-mini\",\n",
    "        messages = messages\n",
    "    )\n",
    "\n",
    "    reply = response.choices[0].message.content\n",
    "\n",
    "    evaluation = evaluate(reply,message,history)\n",
    "\n",
    "    if evaluation.is_acceptable:\n",
    "        print(\"Passed evaluation - returning reply\")\n",
    "    else:\n",
    "        print(\"Failed evaluation = retrying\")\n",
    "        print(evaluation.reply)\n",
    "        reply = rerun(reply, message, history, evaluation.feedback)\n",
    "    return reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 192,
   "id": "3bcbca87",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7877\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7877/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 192,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Passed evaluation - returning reply\n"
     ]
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}