File size: 11,041 Bytes
03ba298
cb5205d
 
4832fb3
 
 
 
 
cb5205d
 
 
4832fb3
 
cb5205d
4832fb3
078b008
4832fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5205d
4832fb3
 
 
 
 
 
 
 
 
 
 
 
 
078b008
 
 
4832fb3
078b008
 
 
4832fb3
 
 
 
cb5205d
078b008
4832fb3
 
 
 
 
 
 
 
 
 
078b008
4832fb3
 
 
 
 
 
078b008
4832fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
078b008
4832fb3
 
 
078b008
4832fb3
 
 
 
 
 
 
 
 
cb5205d
dcfe827
 
 
cb5205d
 
 
dcfe827
 
cb5205d
dcfe827
 
 
 
 
 
cb5205d
4832fb3
078b008
 
4832fb3
078b008
 
4832fb3
 
 
078b008
 
4832fb3
 
 
 
 
078b008
 
 
4832fb3
 
 
 
 
078b008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4832fb3
 
 
 
 
 
 
 
 
 
 
 
 
cb5205d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4832fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfe827
 
 
 
4832fb3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import time
import random
import logging
import json
import yaml
import pandas as pd
import numpy as np
import streamlit as st
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv

import db
import modeling
import utils

def show_launch(placeholder):
    with placeholder.container():
        st.divider()
        st.markdown("""
            ## Before Using the App
            ### Disclaimer
            This application is provided as-is, without any warranty or guarantee of any kind, expressed or implied. It is intended for educational, non-commercial use only.
            The developers of this app shall not be held liable for any damages or losses incurred from its use. By using this application, you agree to the terms and conditions
            outlined herein and acknowledge that any commercial use or reliance on its functionality is strictly prohibited.

            Furthermore, by using this application, you consent to the collection of anonymous usage data. This data will be used for research purposes and to improve the
            application's functionality. No personal information will be recorded or stored.
        """, unsafe_allow_html=True)

        button_placeholder = st.empty()

        connect_to_database()
        if button_placeholder.button(label='Accept Disclaimer', type='primary', use_container_width=True):
            st.session_state.show_launch = False
            placeholder.empty()
            button_placeholder.empty()

def show_demo(placeholder):

    with placeholder:
        with st.container():
            st.divider()
            st.markdown("""
                ## Try it yourself!
                Our recent research shows that sentence transformer ("AI" models)
                can predict respondent patterns in survey data! The model accurately
                infers item-correlation with *r* = **.71** 🧨, and shows even higher
                precision for scale correlations (*r* = **.89** 💥) and reliability
                coefficients (*r* = **.86** 💣)!

                Try it yourself by defining a scale structure using the input field
                below and let the **SurveyBot3000** predict the expected response
                pattern. Use the [YAML](https://yaml.org/) format or follow the structure
                outlined by the preset example.
            """)

            with st.form("submission_form"):

                input_yaml = st.text_area(
                    label="Questionnaire Structure (YAML-Formatted)",
                    value=st.session_state['input_yaml'],
                    height=250
                )

                st.session_state.results_as_matrix = st.checkbox(
                    label="Result as matrix",
                    help="Results will be list-formated (long) by default. Enable to get (wide-format) matrices."
                )

                submitted = st.form_submit_button(
                    label="Get Synthetic Estimates",
                    type="primary",
                    use_container_width=True
                )
                if submitted:

                    try:
                        yaml_dict = yaml.safe_load(input_yaml)
                    except yaml.YAMLError as e:
                        st.error(f"Yikes, you better get your YAML straight! Check https://yaml.org/ for help!")
                        return(None)

                    try:
                        modeling.load_model()
                    except Exception as error:
                        st.error(f"Error while loading model: {error}")
                        st.json(yaml_dict)
                        return(None)

                    try:
                        st.session_state.input_data = modeling.process_yaml_input(yaml_dict)
                    except Exception as error:
                        st.error(error)
                        st.json(yaml_dict)
                        return(None)

                    try:
                        st.session_state.input_data = modeling.encode_input_data()
                    except Exception as error:
                        st.error(error)
                        st.json(yaml_dict)
                        return(None)

                if 'input_data' in st.session_state:

                    if 'yaml_dict' in locals():

                        input_data_serialized = utils.serialize_data(yaml_dict)
                        input_data_hashed = utils.hash(input_data_serialized)
                        payload = {
                            'user_id': st.session_state.user_id,
                            'timestap': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                            'input_hash': input_data_hashed,
                            'input_data': input_data_serialized
                        }
                                                
                        if st.session_state['init_input_hash'] != input_data_hashed:
                            # not logging default example
                            if os.environ.get('remote_model_path'):
                                # not logging locally
                                db.write_to_db(st.session_state.db, payload)

                    tab1, tab2, tab3 = st.tabs(["Item Correlations", "Scale Correlations", "Scale Reliabilities"])

                    with tab1:
                        st.markdown("Θ = Synthetic Item Correlation")
                        synthetic_item_correlations = modeling.get_synthetic_item_correlations()
                        st.dataframe(synthetic_item_correlations, use_container_width=True)

                    with tab2:
                        st.markdown("Θ = Synthetic Scale Correlation")
                        synthetic_scale_correlations = modeling.get_synthetic_scale_correlations()
                        st.dataframe(synthetic_scale_correlations, use_container_width=True)

                    with tab3:
                        st.markdown("alpha (Θ) = Synthetic Reliability Estimate")
                        if np.min(modeling.get_items_per_scale()) < 3:
                            st.error("Please make sure that each scale consits of at least 3 items!")
                        else:
                            synthetic_reliabilities = modeling.get_synthetic_reliabilities()
                            st.dataframe(synthetic_reliabilities, use_container_width=True)

                    if 'yaml_dict' in locals():
                        st.markdown("### Input Structure:")
                        st.json(yaml_dict)

            col1, col2, col3 = st.columns(3)

            with col1:
                if 'synthetic_item_correlations' in locals():
                    st.download_button(
                        label="Download Synthetic Item Correlations as CSV",
                        data=utils.df_to_csv(synthetic_item_correlations),
                        file_name='synthetic_item_correlations.csv',
                        mime='text/csv',
                )
            with col2:
                if 'synthetic_scale_correlations' in locals():
                    st.download_button(
                        label="Download Synthetic Scale Correlations as CSV",
                        data=utils.df_to_csv(synthetic_scale_correlations),
                        file_name='synthetic_scale_correlations.csv',
                        mime='text/csv',
                    )

            with col3:
                if 'synthetic_reliabilities' in locals():
                    st.download_button(
                        label="Download Synthetic Scale Reliabilities as CSV",
                        data=utils.df_to_csv(synthetic_reliabilities),
                        file_name='synthetic_reliabilities.csv',
                        mime='text/csv',
                    )

def handle_checkbox_change():
    # Update session state
    st.session_state.checkbox_state = not st.session_state.checkbox_state
    # You can also add additional actions to be triggered by the checkbox here
def initialize():
    load_dotenv()
    logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)

    if 'state_loaded' not in st.session_state:
        st.session_state['state_loaded'] = True
        with open('init.json') as json_data:
            st.session_state.update(json.load(json_data))

    if 'user_id' not in st.session_state:
        st.session_state.user_id = random.randint(1, 999_999_999)

def connect_to_database():
    """Establishes a connection to the database."""
    
    if st.session_state.db is None:
        credentials_dict = db.load_credentials()
        connection_attempts = 0        

        while st.session_state.db is None and connection_attempts < 3:
            st.session_state.db = db.connect_to_db(credentials_dict)
            if st.session_state.db is None:
                logging.info('Retrying to connect to db...')
                connection_attempts += 1
                time.sleep(1)

def main():
    st.set_page_config(page_title='Synthetic Correlations')

    col1, col2 = st.columns([2, 5])
    with col1:
        st.image('logo-130x130.svg')

    with col2:
        st.markdown("# Synthetic Correlations")
        st.markdown("#### Estimate Item and Scale Correlations, as well as Reliability Coefficients based on nothing but Text!")

    st.markdown("""

        📖 **Preprint (Open Access)**: https://osf.io/preprints/psyarxiv/kjuce

        🖊️ **Cite**: *Hommel, B. E., & Arslan, R. C. (2024). Language models accurately infer correlations between psychological items and scales from text alone. https://doi.org/10.31234/osf.io/kjuce*

        🌐 **Project website**: https://synth-science.github.io/surveybot3000/

        💾 **Data**: https://osf.io/z47qs/

        #️⃣ **Social Media**:
            - [Björn Hommel on X/Twitter](https://twitter.com/BjoernHommel)
            - [Ruben Arslan on X/Twitter](https://twitter.com/rubenarslan/)

        The web application is maintained by [magnolia psychometrics](https://www.magnolia-psychometrics.com/).
    """, unsafe_allow_html=True)

    placeholder_launch = st.empty()
    placeholder_demo = st.empty()

    if 'input_yaml' not in st.session_state:

        with open('sample_input.yaml', 'r') as file:
            try:
                st.session_state['input_yaml'] = file.read()
                init_input_dict = yaml.safe_load(st.session_state['input_yaml'])
                init_input_serialized = utils.serialize_data(init_input_dict)
                init_input_hashed = utils.hash(init_input_serialized)
                st.session_state['init_input_hash'] = init_input_hashed
            except Exception as error:
                print(error)

    if 'disclaimer' not in st.session_state:
        show_launch(placeholder_launch)
        st.session_state['disclaimer'] = True
    else:
        show_demo(placeholder_demo)

if __name__ == '__main__':
    initialize()
    main()