Spaces:
Runtime error
Runtime error
File size: 11,041 Bytes
03ba298 cb5205d 4832fb3 cb5205d 4832fb3 cb5205d 4832fb3 078b008 4832fb3 cb5205d 4832fb3 078b008 4832fb3 078b008 4832fb3 cb5205d 078b008 4832fb3 078b008 4832fb3 078b008 4832fb3 078b008 4832fb3 078b008 4832fb3 cb5205d dcfe827 cb5205d dcfe827 cb5205d dcfe827 cb5205d 4832fb3 078b008 4832fb3 078b008 4832fb3 078b008 4832fb3 078b008 4832fb3 078b008 4832fb3 cb5205d 4832fb3 dcfe827 4832fb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import time
import random
import logging
import json
import yaml
import pandas as pd
import numpy as np
import streamlit as st
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
import db
import modeling
import utils
def show_launch(placeholder):
with placeholder.container():
st.divider()
st.markdown("""
## Before Using the App
### Disclaimer
This application is provided as-is, without any warranty or guarantee of any kind, expressed or implied. It is intended for educational, non-commercial use only.
The developers of this app shall not be held liable for any damages or losses incurred from its use. By using this application, you agree to the terms and conditions
outlined herein and acknowledge that any commercial use or reliance on its functionality is strictly prohibited.
Furthermore, by using this application, you consent to the collection of anonymous usage data. This data will be used for research purposes and to improve the
application's functionality. No personal information will be recorded or stored.
""", unsafe_allow_html=True)
button_placeholder = st.empty()
connect_to_database()
if button_placeholder.button(label='Accept Disclaimer', type='primary', use_container_width=True):
st.session_state.show_launch = False
placeholder.empty()
button_placeholder.empty()
def show_demo(placeholder):
with placeholder:
with st.container():
st.divider()
st.markdown("""
## Try it yourself!
Our recent research shows that sentence transformer ("AI" models)
can predict respondent patterns in survey data! The model accurately
infers item-correlation with *r* = **.71** 🧨, and shows even higher
precision for scale correlations (*r* = **.89** 💥) and reliability
coefficients (*r* = **.86** 💣)!
Try it yourself by defining a scale structure using the input field
below and let the **SurveyBot3000** predict the expected response
pattern. Use the [YAML](https://yaml.org/) format or follow the structure
outlined by the preset example.
""")
with st.form("submission_form"):
input_yaml = st.text_area(
label="Questionnaire Structure (YAML-Formatted)",
value=st.session_state['input_yaml'],
height=250
)
st.session_state.results_as_matrix = st.checkbox(
label="Result as matrix",
help="Results will be list-formated (long) by default. Enable to get (wide-format) matrices."
)
submitted = st.form_submit_button(
label="Get Synthetic Estimates",
type="primary",
use_container_width=True
)
if submitted:
try:
yaml_dict = yaml.safe_load(input_yaml)
except yaml.YAMLError as e:
st.error(f"Yikes, you better get your YAML straight! Check https://yaml.org/ for help!")
return(None)
try:
modeling.load_model()
except Exception as error:
st.error(f"Error while loading model: {error}")
st.json(yaml_dict)
return(None)
try:
st.session_state.input_data = modeling.process_yaml_input(yaml_dict)
except Exception as error:
st.error(error)
st.json(yaml_dict)
return(None)
try:
st.session_state.input_data = modeling.encode_input_data()
except Exception as error:
st.error(error)
st.json(yaml_dict)
return(None)
if 'input_data' in st.session_state:
if 'yaml_dict' in locals():
input_data_serialized = utils.serialize_data(yaml_dict)
input_data_hashed = utils.hash(input_data_serialized)
payload = {
'user_id': st.session_state.user_id,
'timestap': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'input_hash': input_data_hashed,
'input_data': input_data_serialized
}
if st.session_state['init_input_hash'] != input_data_hashed:
# not logging default example
if os.environ.get('remote_model_path'):
# not logging locally
db.write_to_db(st.session_state.db, payload)
tab1, tab2, tab3 = st.tabs(["Item Correlations", "Scale Correlations", "Scale Reliabilities"])
with tab1:
st.markdown("Θ = Synthetic Item Correlation")
synthetic_item_correlations = modeling.get_synthetic_item_correlations()
st.dataframe(synthetic_item_correlations, use_container_width=True)
with tab2:
st.markdown("Θ = Synthetic Scale Correlation")
synthetic_scale_correlations = modeling.get_synthetic_scale_correlations()
st.dataframe(synthetic_scale_correlations, use_container_width=True)
with tab3:
st.markdown("alpha (Θ) = Synthetic Reliability Estimate")
if np.min(modeling.get_items_per_scale()) < 3:
st.error("Please make sure that each scale consits of at least 3 items!")
else:
synthetic_reliabilities = modeling.get_synthetic_reliabilities()
st.dataframe(synthetic_reliabilities, use_container_width=True)
if 'yaml_dict' in locals():
st.markdown("### Input Structure:")
st.json(yaml_dict)
col1, col2, col3 = st.columns(3)
with col1:
if 'synthetic_item_correlations' in locals():
st.download_button(
label="Download Synthetic Item Correlations as CSV",
data=utils.df_to_csv(synthetic_item_correlations),
file_name='synthetic_item_correlations.csv',
mime='text/csv',
)
with col2:
if 'synthetic_scale_correlations' in locals():
st.download_button(
label="Download Synthetic Scale Correlations as CSV",
data=utils.df_to_csv(synthetic_scale_correlations),
file_name='synthetic_scale_correlations.csv',
mime='text/csv',
)
with col3:
if 'synthetic_reliabilities' in locals():
st.download_button(
label="Download Synthetic Scale Reliabilities as CSV",
data=utils.df_to_csv(synthetic_reliabilities),
file_name='synthetic_reliabilities.csv',
mime='text/csv',
)
def handle_checkbox_change():
# Update session state
st.session_state.checkbox_state = not st.session_state.checkbox_state
# You can also add additional actions to be triggered by the checkbox here
def initialize():
load_dotenv()
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
if 'state_loaded' not in st.session_state:
st.session_state['state_loaded'] = True
with open('init.json') as json_data:
st.session_state.update(json.load(json_data))
if 'user_id' not in st.session_state:
st.session_state.user_id = random.randint(1, 999_999_999)
def connect_to_database():
"""Establishes a connection to the database."""
if st.session_state.db is None:
credentials_dict = db.load_credentials()
connection_attempts = 0
while st.session_state.db is None and connection_attempts < 3:
st.session_state.db = db.connect_to_db(credentials_dict)
if st.session_state.db is None:
logging.info('Retrying to connect to db...')
connection_attempts += 1
time.sleep(1)
def main():
st.set_page_config(page_title='Synthetic Correlations')
col1, col2 = st.columns([2, 5])
with col1:
st.image('logo-130x130.svg')
with col2:
st.markdown("# Synthetic Correlations")
st.markdown("#### Estimate Item and Scale Correlations, as well as Reliability Coefficients based on nothing but Text!")
st.markdown("""
📖 **Preprint (Open Access)**: https://osf.io/preprints/psyarxiv/kjuce
🖊️ **Cite**: *Hommel, B. E., & Arslan, R. C. (2024). Language models accurately infer correlations between psychological items and scales from text alone. https://doi.org/10.31234/osf.io/kjuce*
🌐 **Project website**: https://synth-science.github.io/surveybot3000/
💾 **Data**: https://osf.io/z47qs/
#️⃣ **Social Media**:
- [Björn Hommel on X/Twitter](https://twitter.com/BjoernHommel)
- [Ruben Arslan on X/Twitter](https://twitter.com/rubenarslan/)
The web application is maintained by [magnolia psychometrics](https://www.magnolia-psychometrics.com/).
""", unsafe_allow_html=True)
placeholder_launch = st.empty()
placeholder_demo = st.empty()
if 'input_yaml' not in st.session_state:
with open('sample_input.yaml', 'r') as file:
try:
st.session_state['input_yaml'] = file.read()
init_input_dict = yaml.safe_load(st.session_state['input_yaml'])
init_input_serialized = utils.serialize_data(init_input_dict)
init_input_hashed = utils.hash(init_input_serialized)
st.session_state['init_input_hash'] = init_input_hashed
except Exception as error:
print(error)
if 'disclaimer' not in st.session_state:
show_launch(placeholder_launch)
st.session_state['disclaimer'] = True
else:
show_demo(placeholder_demo)
if __name__ == '__main__':
initialize()
main() |