File size: 6,470 Bytes
773685b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import streamlit as st
import pandas as pd
import logging
import json
from dotenv import load_dotenv

import modeling

def show_launch(placeholder):
    with placeholder.container():
        st.divider()
        st.markdown("""
            ## Before Using the App
            ### Disclaimer
            This application is provided as-is, without any warranty or guarantee of any kind, expressed or implied. It is intended for educational, non-commercial use only.
            The developers of this app shall not be held liable for any damages or losses incurred from its use. By using this application, you agree to the terms and conditions
            outlined herein and acknowledge that any commercial use or reliance on its functionality is strictly prohibited.
        """, unsafe_allow_html=True)

        button_placeholder = st.empty()

        if button_placeholder.button(label='Accept Disclaimer', type='primary', use_container_width=True):
            st.session_state.show_launch = False
            placeholder.empty()
            button_placeholder.empty()

def show_demo(placeholder):

    with placeholder:
        with st.container():
            st.divider()
            st.markdown("""
                ## Try it yourself!
                Use the input fields provided below to create items aimed at 
                assessing a particular psychological construct (e.g., personality 
                trait). If desired, employ the prefix option to generate items 
                that begin with a predetermined string. To manage the diversity 
                of the output, various sampling strategies may be applied. 
                For further information on these strategies, please refer to the 
                accompanying paper.
            """)

            modeling.load_model()

    sampling_options = ['Greedy Search', 'Beam Search', 'Multinominal Sampling']
    sampling_input = st.radio('Sampling', options=sampling_options, index=2, horizontal=True)
    left_col, right_col = st.columns([1, 1])
    
    with left_col:
        prefix_input = st.text_input('Prefix', '')
        construct_input = st.text_input('Construct', 'Pessimism')

    with right_col:
        if sampling_options.index(sampling_input) == 0:
            num_beams = 1
            num_return_sequences = 1
            temperature = 1
            top_k = 0
            top_p = 1

        if sampling_options.index(sampling_input) == 1:
            num_beams = st.slider('Number of Search Beams', min_value=1, max_value=10, value=3, step=1)
            num_return_sequences = st.slider('Number of Beams to Return', min_value=1, max_value=10, value=2, step=1)
            temperature = 1
            top_k = 0
            top_p = 1

        if sampling_options.index(sampling_input) == 2:
            num_beams = 1
            num_return_sequences = 1
            temperature = st.slider('Temperature', min_value=0.1, max_value=1.5, value=1.0, step=0.1)
            top_k = st.slider('Top k (0 = disabled)', min_value=0, max_value=1000, value=40, step=1)
            top_p = st.slider('Top p (0 = disabled)', min_value=0.0, max_value=1.0, value=0.95, step=0.05)

    message = st.empty()

    if st.button(label='Generate Item', type='primary', use_container_width=True):
        if num_return_sequences <= num_beams:
            if len(construct_input) > 0:

                kwargs = {
                    'num_return_sequences': num_return_sequences,
                    'num_beams': num_beams,
                    'do_sample': sampling_options.index(sampling_input) == 2,
                    'temperature': temperature,
                    'top_k': top_k,
                    'top_p': top_p
                }

                item_stems = modeling.generate_items(construct_input, prefix_input, **kwargs)
                st.session_state.outputs.append({'construct': construct_input, 'item': item_stems})
            else:
                message.error('You have to enter a construct to proceed with item generation!')
        else:
            message.error('You cannot return more beams than to search for!')


    if len(st.session_state.outputs) > 0:        
        tab1, tab2 = st.tabs(["Generated Items", "Details on last prompt"])

        with tab1:
            for output in st.session_state.outputs:                
                placeholder_outputs = st.empty()

        with tab2:
            pass

        df = pd.DataFrame(st.session_state.outputs).explode(column='item').reset_index()
        placeholder_outputs = st.dataframe(df.sort_values(by='index', ascending=False), use_container_width=True)

def initialize():    
    load_dotenv()
    logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)

    if 'state_loaded' not in st.session_state:
        st.session_state['state_loaded'] = True
        with open('init.json') as json_data:
            st.session_state.update(json.load(json_data))

def main():
    st.set_page_config(page_title='Construct-Specific Automatic Item Generation')

    col1, col2 = st.columns([2, 5])
    with col1:
        st.image('logo-130x130.svg')

    with col2:
        st.markdown("# Construct-Specific Automatic Item Generation")

    st.markdown("""
        This web application showcases item generation for psychological scale development 
        using natural language processing ("AI"), accompanying the paper 
        "Transformer-Based Deep Neural Language Modeling for Construct-Specific Automatic Item Generation".

        πŸ“– Paper (Open Access): https://link.springer.com/article/10.1007/s11336-021-09823-9

        πŸ’Ύ Data: https://osf.io/rhe9w/

        πŸ–ŠοΈ Cite:<br> Hommel, B. E., Wollang, F.-J. M., Kotova, V., Zacher, H., & Schmukle, S. C. (2022). Transformer-Based Deep Neural Language Modeling for Construct-Specific Automatic Item Generation. Psychometrika, 87(2), 749–772. https://doi.org/10.1007/s11336-021-09823-9

        #️⃣ Twitter/X: https://twitter.com/BjoernHommel

        The web application is maintained by [magnolia psychometrics](https://www.magnolia-psychometrics.com/).
    """, unsafe_allow_html=True)

    placeholder_launch = st.empty()
    placeholder_demo = st.empty()

    if 'disclaimer' not in st.session_state:
        show_launch(placeholder_launch)
        st.session_state['disclaimer'] = True
    else:
        show_demo(placeholder_demo)

if __name__ == '__main__':
    initialize()
    main()