File size: 17,714 Bytes
e4bd7f9
 
 
 
 
 
 
 
 
 
 
 
6abcd14
8b7303a
 
 
6abcd14
e4bd7f9
 
 
 
192e5fb
e4bd7f9
 
 
 
 
192e5fb
e4bd7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec16106
e4bd7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import PIL
import numpy as np
import torch
import torch.nn as nn
import torchvision
from yacs.config import CfgNode as CN
from PIL import ImageDraw
from segment_anything import build_sam, SamPredictor
from segment_anything.utils.amg import remove_small_regions
from PIL import ImageDraw, ImageFont

from constants.constant import DARKER_COLOR_MAP, LIGHTER_COLOR_MAP, COLORS
import groundingdino.datasets.transforms as T
# from groundingdino import build_groundingdino
 
from groundingdino.models.GroundingDINO.groundingdino import build_groundingdino
from groundingdino.util.inference import annotate, load_image, predict
from groundingdino.util.utils import clean_state_dict


def load_groundingdino_model(model_config_path, model_checkpoint_path):
    import gc
    args = CN.load_cfg(open(model_config_path, "r"))
    model = build_groundingdino(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print('loading GroundingDINO:', load_res)
    gc.collect()
    _ = model.eval()
    return model


class GroundingModule(nn.Module):
    def __init__(self, device='cpu'):
        super().__init__()
        self.device = device
        sam_checkpoint = "./checkpoints/sam_vit_h_4b8939.pth"
        groundingdino_checkpoint = "./checkpoints/groundingdino_swint_ogc.pth"
        groundingdino_config_file = "./eval_configs/GroundingDINO_SwinT_OGC.yaml"

        self.grounding_model = load_groundingdino_model(groundingdino_config_file,
                                                        groundingdino_checkpoint).to(device)
        self.grounding_model.eval()

        sam = build_sam(checkpoint=sam_checkpoint).to(device)
        sam.eval()
        self.sam_predictor = SamPredictor(sam)

    @torch.no_grad()
    def prompt2mask(self, original_image, prompt, state, box_threshold=0.35, text_threshold=0.25, num_boxes=10):
        def image_transform_grounding(init_image):
            transform = T.Compose([
                T.RandomResize([800], max_size=1333),
                T.ToTensor(),
                T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])
            image, _ = transform(init_image, None)  # 3, h, w
            return init_image, image

        image_np = np.array(original_image, dtype=np.uint8)
        prompt = prompt.lower()
        prompt = prompt.strip()
        if not prompt.endswith("."):
            prompt = prompt + "."
        _, image_tensor = image_transform_grounding(original_image)
        print('==> Box grounding with "{}"...'.format(prompt))
        with torch.cuda.amp.autocast(enabled=True):
            boxes, logits, phrases = predict(self.grounding_model,
                                             image_tensor, prompt, box_threshold, text_threshold, device=self.device)
        print(phrases)
        # from PIL import Image, ImageDraw, ImageFont
        H, W = original_image.size[1], original_image.size[0]

        draw_img = original_image.copy()
        draw = ImageDraw.Draw(draw_img)
        color_boxes = []
        color_masks = []
        local_results = [original_image.copy() for _ in range(len(state['entity']))]

        local2entity = {}
        for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
            # from 0..1 to 0..W, 0..H
            box = box * torch.Tensor([W, H, W, H])
            # from xywh to xyxy
            box[:2] -= box[2:] / 2
            box[2:] += box[:2]
            # random color
            for i, s in enumerate(state['entity']):
                # print(label.lower(), i[0].lower(), label.lower() == i[0].lower())
                if label.lower() == s[0].lower():
                    local2entity[obj_ind] = i
                    break

            if obj_ind not in local2entity:
                print('Color not found', label)
                color = "grey"  # In grey mode.
                # tuple(np.random.randint(0, 255, size=3).tolist())
            else:
                for i, s in enumerate(state['entity']):
                    # print(label.lower(), i[0].lower(), label.lower() == i[0].lower())
                    if label.lower() == s[0].lower():
                        local2entity[obj_ind] = i
                        break

                if obj_ind not in local2entity:
                    print('Color not found', label)
                    color = tuple(np.random.randint(0, 255, size=3).tolist())
                else:
                    color = state['entity'][local2entity[obj_ind]][3]
            color_boxes.append(color)
            print(color_boxes)
            # draw
            x0, y0, x1, y1 = box
            x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

            draw.rectangle([x0, y0, x1, y1], outline=color, width=10)
            # font = ImageFont.load_default()
            font = ImageFont.truetype('InputSans-Regular.ttf', int(H / 512.0 * 30))
            if hasattr(font, "getbbox"):
                bbox = draw.textbbox((x0, y0), str(label), font)
            else:
                w, h = draw.textsize(str(label), font)
                bbox = (x0, y0, w + x0, y0 + h)
            draw.rectangle(bbox, fill=color)
            draw.text((x0, y0), str(label), fill="white", font=font)

            if obj_ind in local2entity:
                local_draw = ImageDraw.Draw(local_results[local2entity[obj_ind]])
                local_draw.rectangle([x0, y0, x1, y1], outline=color, width=10)
                local_draw.rectangle(bbox, fill=color)
                local_draw.text((x0, y0), str(label), fill="white", font=font)

        if boxes.size(0) > 0:
            print('==> Mask grounding...')
            boxes = boxes * torch.Tensor([W, H, W, H])
            boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
            boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]

            self.sam_predictor.set_image(image_np)

            transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes, image_np.shape[:2])
            with torch.cuda.amp.autocast(enabled=True):
                masks, _, _ = self.sam_predictor.predict_torch(
                    point_coords=None,
                    point_labels=None,
                    boxes=transformed_boxes.to(self.device),
                    multimask_output=False,
                )

            # remove small disconnected regions and holes
            fine_masks = []
            for mask in masks.to('cpu').numpy():  # masks: [num_masks, 1, h, w]
                fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
            masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
            masks = torch.from_numpy(masks)

            num_obj = min(len(logits), num_boxes)
            mask_map = None

            full_img = None
            for obj_ind in range(num_obj):
                # box = boxes[obj_ind]

                m = masks[obj_ind][0]

                if full_img is None:
                    full_img = np.zeros((m.shape[0], m.shape[1], 3))
                    mask_map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
                local_image = np.zeros((m.shape[0], m.shape[1], 3))

                mask_map[m != 0] = obj_ind + 1
                # color_mask = np.random.random((1, 3)).tolist()[0]
                color_mask = np.array(color_boxes[obj_ind]) / 255.0
                full_img[m != 0] = color_mask
                local_image[m != 0] = color_mask
                # if local_results[local2entity[obj_ind]] is not None:
                #     local_image[m == 0] = np.asarray(local_results[local2entity[obj_ind]])[m == 0]
                local_image = (local_image * 255).astype(np.uint8)
                local_image = PIL.Image.fromarray(local_image)
                if local_results[local2entity[obj_ind]] is not None:
                    local_results[local2entity[obj_ind]] = PIL.Image.blend(local_results[local2entity[obj_ind]],
                                                                           local_image, 0.5)
            full_img = (full_img * 255).astype(np.uint8)
            full_img = PIL.Image.fromarray(full_img)
            draw_img = PIL.Image.blend(draw_img, full_img, 0.5)

        return draw_img, local_results

    # def draw_text(self, entity_state, entity, text):
    #     local_img = entity_state['grounding']['local'][entity]['image'].copy()
    #     H, W = local_img.width, local_img.height
    #     font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
    #
    #     for x0, y0 in entity_state['grounding']['local'][entity]['text_positions']:
    #         color = entity_state['grounding']['local'][entity]['color']
    #         local_draw = ImageDraw.Draw(local_img)
    #         if hasattr(font, "getbbox"):
    #             bbox = local_draw.textbbox((x0, y0), str(text), font)
    #         else:
    #             w, h = local_draw.textsize(str(text), font)
    #             bbox = (x0, y0, w + x0, y0 + h)
    #
    #         local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
    #         local_draw.text((x0, y0), str(text), fill="white", font=font)
    #     return local_img

    def draw(self, original_image, entity_state, item=None):
        original_image = original_image.copy()
        W, H = original_image.width, original_image.height
        font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
        local_image = np.zeros((H, W, 3))
        local_mask = np.zeros((H, W), dtype=bool)

        def draw_item(img, item):
            nonlocal local_image, local_mask
            entity = entity_state['match_state'][item]
            ei = entity_state['grounding']['local'][entity]
            color = ei['color']
            local_draw = ImageDraw.Draw(img)
            for x0, y0, x1, y1 in ei['entity_positions']:
                local_draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color],
                                     width=int(min(H, W) / 512.0 * 10))
            for x0, y0 in ei['text_positions']:
                if hasattr(font, "getbbox"):
                    bbox = local_draw.textbbox((x0, y0), str(item), font)
                else:
                    w, h = local_draw.textsize(str(item), font)
                    bbox = (x0, y0, w + x0, y0 + h)

                local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
                local_draw.text((x0, y0), str(item), fill="white", font=font)
            for m in ei['masks']:
                local_image[m != 0] = np.array(LIGHTER_COLOR_MAP[color]) / 255.0
                local_mask = np.logical_or(local_mask, m)
            # local_image = (local_image * 255).astype(np.uint8)
            # local_image = PIL.Image.fromarray(local_image)
            # img = PIL.Image.blend(img, local_image, 0.5)
            return img

        if item is None:
            for item in entity_state['match_state'].keys():
                original_image = draw_item(original_image, item)
        else:
            original_image = draw_item(original_image, item)
        local_image[local_mask == 0] = (np.array(original_image) / 255.0)[local_mask == 0]
        local_image = (local_image * 255).astype(np.uint8)
        local_image = PIL.Image.fromarray(local_image)

        original_image = PIL.Image.blend(original_image, local_image, 0.5)
        return original_image

    @torch.no_grad()
    def prompt2mask2(self, original_image, prompt, state, box_threshold=0.25,
                     text_threshold=0.2, iou_threshold=0.5, num_boxes=10):
        def image_transform_grounding(init_image):
            transform = T.Compose([
                T.RandomResize([800], max_size=1333),
                T.ToTensor(),
                T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])
            image, _ = transform(init_image, None)  # 3, h, w
            return init_image, image

        image_np = np.array(original_image, dtype=np.uint8)
        prompt = prompt.lower()
        prompt = prompt.strip()
        if not prompt.endswith("."):
            prompt = prompt + "."
        _, image_tensor = image_transform_grounding(original_image)
        print('==> Box grounding with "{}"...'.format(prompt))
        with torch.cuda.amp.autocast(enabled=True):
            boxes, logits, phrases = predict(self.grounding_model,
                                             image_tensor, prompt, box_threshold, text_threshold, device=self.device)
        print('==> Box grounding results {}...'.format(phrases))

        # boxes_filt = boxes.cpu()
        # # use NMS to handle overlapped boxes
        # print(f"==> Before NMS: {boxes_filt.shape[0]} boxes")
        # nms_idx = torchvision.ops.nms(boxes_filt, logits, iou_threshold).numpy().tolist()
        # boxes_filt = boxes_filt[nms_idx]
        # phrases = [phrases[idx] for idx in nms_idx]
        # print(f"==> After NMS: {boxes_filt.shape[0]} boxes")
        # boxes = boxes_filt

        # from PIL import Image, ImageDraw, ImageFont
        H, W = original_image.size[1], original_image.size[0]

        draw_img = original_image.copy()
        draw = ImageDraw.Draw(draw_img)
        color_boxes = []
        color_masks = []

        entity_dict = {}
        for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
            # from 0..1 to 0..W, 0..H
            box = box * torch.Tensor([W, H, W, H])
            # from xywh to xyxy
            box[:2] -= box[2:] / 2
            box[2:] += box[:2]
            if label not in entity_dict:
                entity_dict[label] = {
                    'color': COLORS[len(entity_dict) % (len(COLORS) - 1)],
                    # 'image': original_image.copy(),
                    'text_positions': [],
                    'entity_positions': [],
                    'masks': []
                }
            color = entity_dict[label]['color']

            color_boxes.append(DARKER_COLOR_MAP[color])
            color_masks.append(LIGHTER_COLOR_MAP[color])

            # draw
            x0, y0, x1, y1 = box
            x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

            draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color], width=10)
            font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
            if hasattr(font, "getbbox"):
                bbox = draw.textbbox((x0, y0), str(label), font)
            else:
                w, h = draw.textsize(str(label), font)
                bbox = (x0, y0, w + x0, y0 + h)

            draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
            draw.text((x0, y0), str(label), fill="white", font=font)

            # local_img = entity_dict[label]['image']
            # local_draw = ImageDraw.Draw(local_img)
            # local_draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color], width=10)
            entity_dict[label]['text_positions'].append((x0, y0))
            entity_dict[label]['entity_positions'].append((x0, y0, x1, y1))
            # local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
            # local_draw.text((x0, y0), str(label), fill="white", font=font)

        if boxes.size(0) > 0:
            print('==> Mask grounding...')
            boxes = boxes * torch.Tensor([W, H, W, H])
            boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
            boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]

            self.sam_predictor.set_image(image_np)

            transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes,
                                                                               image_np.shape[:2]).to(self.device)
            with torch.cuda.amp.autocast(enabled=True):
                masks, _, _ = self.sam_predictor.predict_torch(
                    point_coords=None,
                    point_labels=None,
                    boxes=transformed_boxes.to(self.device),
                    multimask_output=False,
                )

            # remove small disconnected regions and holes
            fine_masks = []
            for mask in masks.to('cpu').numpy():  # masks: [num_masks, 1, h, w]
                fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
            masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
            masks = torch.from_numpy(masks)

            mask_map = None

            full_img = None
            for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):

                m = masks[obj_ind][0]

                if full_img is None:
                    full_img = np.zeros((m.shape[0], m.shape[1], 3))
                    mask_map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
                # local_image = np.zeros((m.shape[0], m.shape[1], 3))

                mask_map[m != 0] = obj_ind + 1
                color_mask = np.array(color_masks[obj_ind]) / 255.0

                full_img[m != 0] = color_mask

                entity_dict[label]['masks'].append(m)
                # local_image[m != 0] = color_mask
                # local_image[m == 0] = (np.array(entity_dict[label]['image']) / 255.0)[m == 0]
                #
                # local_image = (local_image * 255).astype(np.uint8)
                # local_image = PIL.Image.fromarray(local_image)
                # entity_dict[label]['image'] = PIL.Image.blend(entity_dict[label]['image'], local_image, 0.5)

            full_img = (full_img * 255).astype(np.uint8)
            full_img = PIL.Image.fromarray(full_img)
            draw_img = PIL.Image.blend(draw_img, full_img, 0.5)
        print('==> Entity list: {}'.format(list(entity_dict.keys())))
        return draw_img, entity_dict