Spaces:
Runtime error
Runtime error
File size: 13,534 Bytes
e4bd7f9 192e5fb e4bd7f9 192e5fb e4bd7f9 d58d6b8 e4bd7f9 d58d6b8 19aa79a e4bd7f9 192e5fb e4bd7f9 192e5fb e4bd7f9 957434c e4bd7f9 72960a7 e4bd7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import random
from typing import Dict, Tuple, List, Union
import torch
import torch.nn as nn
import re
from torch import Tensor
from transformers import LlamaTokenizer
from omegaconf import DictConfig
from imagebind.models.image_bind import imagebind_huge, ImageBindJoiner, ModalityType, replace_joiner_vision
from bubogpt.common.registry import registry
from bubogpt.models.blip2 import BaseModel
from bubogpt.models.modeling_llama import LlamaForCausalLM
def filter_prompt(input_embeds: Dict[str, Tensor], prompt_list: List[str]) -> List[str]:
if not prompt_list:
return prompt_list
input_modal_set = set([k.title() for k in input_embeds if input_embeds[k] is not None])
prompt_modal_sets = [set(re.findall("<([^<>]+)><ModalityHere></\\1>", prompt)) for prompt in prompt_list]
results = [prompt_list[i] for i, prompt_modal_set in enumerate(prompt_modal_sets) if
prompt_modal_set == input_modal_set]
return results
def arrange_modalities(input_embeds: Dict[str, Tensor], prompt: str) -> List[Tensor]:
prompt_modalities = re.findall("<([^<>]+)><ModalityHere></\\1>", prompt)
return [input_embeds[modality.lower()] for modality in prompt_modalities]
def concat_all_embeddings(input_embeds: Dict[str, Tensor], dim: int) -> Tensor:
embeds = [input_embeds[key] for key in input_embeds if input_embeds[key] is not None]
return torch.cat(embeds, dim=dim)
def filter_modalities(inputs):
filtered_inputs = {}
for k in ModalityType.__dict__.values():
if k in inputs:
filtered_inputs[k] = inputs[k]
return filtered_inputs
@registry.register_model("mm_gpt4")
class MMGPT4(BaseModel):
"""
ImageBind GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_vicuna": "configs/models/mmgpt4.yaml",
}
def __init__(
self,
joiner_cfg: DictConfig,
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
freeze_imagebind=True,
freeze_qformer=False,
num_query_token=32,
llama_model="",
prompt_path="",
prompt_template="",
max_txt_len=128,
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
with_bind_head=False,
freeze_llm=True,
use_blip_vision=False,
proj_model="",
):
super().__init__()
assert not low_resource, "Low Resource Mode is Currently Unavailable."
self.low_resource = low_resource
import gc
print('Loading ImageBind')
self.multimodal_encoder = imagebind_huge(pretrained=True, freeze_imagebind=freeze_imagebind,
with_head=with_bind_head, use_blip_vision=use_blip_vision)
print('Loading ImageBind Done')
gc.collect()
print(f'Loading LLAMA from {llama_model}')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False, use_auth_token=True)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_model = LlamaForCausalLM.from_pretrained(llama_model, load_in_8bit=True,
torch_dtype=torch.float16, device_map="auto", use_auth_token=True)
if freeze_llm:
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
gc.collect()
print('Loading Q-Former and Adapter/Projector')
self.multimodal_joiner = ImageBindJoiner(joiner_cfg, output_dim=self.llama_model.config.hidden_size)
if use_blip_vision:
replace_joiner_vision(self.multimodal_joiner, q_former_model, proj_model)
print('Loading Q-Former and Adapter/Projector Done')
gc.collect()
self.max_txt_len = max_txt_len
self.end_sym = end_sym
print("Preparing Prompts")
self.prompt_template = prompt_template
if prompt_path:
with open(prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
self.prompt_list = [prompt_template.format(p) for p in raw_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
print("Preparing Prompts Done")
def maybe_autocast(self, dtype=torch.float16):
# if on cpu, don't use autocast
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
return torch.cuda.amp.autocast(dtype=dtype)
else:
import contextlib
return contextlib.nullcontext()
def encode_inputs(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
with self.maybe_autocast():
imagebind_outputs = self.multimodal_encoder(inputs)
llama_inputs = self.multimodal_joiner(imagebind_outputs)
return llama_inputs
def prompt_wrap(self, inputs: Dict[str, Tensor], prompt: Union[str, list]) -> Tuple[Tensor, Tensor]:
if isinstance(prompt, (list, tuple)):
bs = list(inputs.values())[0].shape[0]
assert bs == len(prompt)
return self.batch_prompt_wrap(inputs, prompt)
elif isinstance(prompt, (str, type(None))):
return self.single_prompt_wrap(inputs, prompt)
else:
raise NotImplementedError(f"Prompt type: {type(prompt)} not supported.")
def single_prompt_wrap(self, inputs: Dict[str, Tensor], prompt: str) -> Tuple[Tensor, Tensor]:
if not prompt:
input_embeds = concat_all_embeddings(inputs, dim=1)
attns_input = torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(input_embeds.device)
return input_embeds, attns_input
input_embeds_list = arrange_modalities(inputs, prompt)
batch_size = input_embeds_list[0].shape[0]
prompt_slices = prompt.split('<ModalityHere>')
prompt_tokens = [self.llama_tokenizer(prompt_slice, return_tensors="pt", add_special_tokens=False)
.to(input_embeds_list[0].device) for prompt_slice in prompt_slices]
prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids).expand(batch_size, -1, -1)
for prompt_token in prompt_tokens]
result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list)
for emb in pair] + [prompt_embeds[-1]]
wrapped_input_embeds = torch.cat(result_embeds, dim=1)
wrapped_atts_input = torch.ones(wrapped_input_embeds.size()[:-1],
dtype=torch.long).to(wrapped_input_embeds.device)
return wrapped_input_embeds, wrapped_atts_input
def batch_prompt_wrap(self, inputs: Dict[str, Tensor], prompts: List[str]) -> Tuple[Tensor, Tensor]:
device = list(inputs.values())[0].device
# This one only works for visual prompting
prompt_slices = [prompt.split('<ModalityHere>') for prompt in prompts]
slice_batch = list(zip(*prompt_slices))
prompt_tokens = [self.llama_tokenizer(slice,
return_tensors="pt",
add_special_tokens=False,
padding="longest",
truncation=True,
max_length=self.max_txt_len).to(device)
for slice in slice_batch]
prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids) for prompt_token in prompt_tokens]
prompt_masks = [prompt_token.attention_mask for prompt_token in prompt_tokens]
# NOTE: assuming moalities are the same within a batch
input_embeds_list = arrange_modalities(inputs, prompts[0])
input_mask_list = [torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(device) for input_embeds in input_embeds_list]
result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list) for emb in pair] + [prompt_embeds[-1]]
result_masks = [mask for pair in zip(prompt_masks[:-1], input_mask_list) for mask in pair] + [prompt_masks[-1]]
wrapped_input_embeds = torch.cat(result_embeds, dim=1)
wrapped_atts_input = torch.cat(result_masks, dim=1)
return wrapped_input_embeds, wrapped_atts_input
def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
# filter `inputs` as it may contain informatioins other than modalities
modality_inputs = filter_modalities(inputs)
embeds = self.encode_inputs(modality_inputs)
filtered_prompts = filter_prompt(embeds, self.prompt_list)
if "prompt" in inputs:
assert isinstance(inputs["prompt"], (list, tuple))
prompt = [self.prompt_template.format(p) for p in inputs["prompt"]]
elif filtered_prompts:
prompt = random.choice(filtered_prompts)
else:
prompt = None
# NOTE&TODO: add support for a list of prompts
input_embs, input_atts = self.prompt_wrap(embeds, prompt)
# NOTE: No modifications from the next line to the end. Except for the autocast part.
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in inputs["text_input"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(input_embs.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones([input_atts.shape[0], input_atts.shape[1] + 1],
dtype=torch.long).to(input_embs.device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = input_embs.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = input_atts[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, input_embs, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, input_atts, to_regress_tokens.attention_mask], dim=1)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@classmethod
def from_config(cls, cfg):
joiner_cfg = cfg.get("joiner_cfg")
q_former_model = cfg.get(
"q_former_model",
"checkpoints/blip2_pretrained_flant5xxl.pth",
)
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
freeze_imagebind = cfg.get("freeze_imagebind", True)
freeze_qformer = cfg.get("freeze_qformer", True)
low_resource = cfg.get("low_resource", False)
device_8bit = cfg.get("device_8bit", 0)
prompt_path = cfg.get("prompt_path", "")
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 128)
end_sym = cfg.get("end_sym", '\n')
with_bind_head = cfg.get("with_bind_head", False)
freeze_llm = cfg.get("freeze_llm", True)
use_blip_vision = cfg.get("use_blip_vision", False)
proj_model = cfg.get("proj_model", "")
model = cls(
joiner_cfg=joiner_cfg,
q_former_model=q_former_model,
freeze_imagebind=freeze_imagebind,
freeze_qformer=freeze_qformer,
num_query_token=num_query_token,
llama_model=llama_model,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym,
low_resource=low_resource,
device_8bit=device_8bit,
with_bind_head=with_bind_head,
freeze_llm=freeze_llm,
use_blip_vision=use_blip_vision,
proj_model=proj_model,
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
if isinstance(ckpt_path, str):
ckpt_path = [ckpt_path]
for cur_ckpt_path in ckpt_path:
print("Load ImageBind-LLM Checkpoint: {}".format(cur_ckpt_path))
ckpt = torch.load(cur_ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model |