File size: 8,197 Bytes
e4bd7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
 This file is from
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import logging
import os
import shutil
import warnings

from omegaconf import OmegaConf
import torch.distributed as dist
from torchvision.datasets.utils import download_url

import bubogpt.common.utils as utils
from bubogpt.common.dist_utils import is_dist_avail_and_initialized, is_main_process
from bubogpt.common.registry import registry
from bubogpt.processors.base_processor import BaseProcessor


class ImageBaseDatasetBuilder:
    train_dataset_cls, eval_dataset_cls = None, None

    def __init__(self, cfg=None):
        super().__init__()

        if cfg is None:
            # help to create datasets from default config.
            self.config = load_dataset_config(self.default_config_path())
        elif isinstance(cfg, str):
            self.config = load_dataset_config(cfg)
        else:
            # when called from task.build_dataset()
            self.config = cfg

        self.data_type = self.config.data_type

        self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
        self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}

    def build_datasets(self):
        # download, split, etc...
        # only called on 1 GPU/TPU in distributed

        if is_main_process():
            self._download_data()

        if is_dist_avail_and_initialized():
            dist.barrier()

        # at this point, all the annotations and image/videos should be all downloaded to the specified locations.
        logging.info("Building datasets...")
        datasets = self.build()  # dataset['train'/'val'/'test']

        return datasets

    def build_processors(self):
        vis_proc_cfg = self.config.get("vis_processor")
        txt_proc_cfg = self.config.get("text_processor")

        if vis_proc_cfg is not None:
            vis_train_cfg = vis_proc_cfg.get("train")
            vis_eval_cfg = vis_proc_cfg.get("eval")

            self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
            self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)

        if txt_proc_cfg is not None:
            txt_train_cfg = txt_proc_cfg.get("train")
            txt_eval_cfg = txt_proc_cfg.get("eval")

            self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
            self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)

    @staticmethod
    def _build_proc_from_cfg(cfg):
        return (
            registry.get_processor_class(cfg.name).from_config(cfg)
            if cfg is not None
            else None
        )

    @classmethod
    def default_config_path(cls, type="default"):
        if cls.DATASET_CONFIG_DICT[type] is None:
            return None
        else:
            return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type])

    def _download_data(self):
        self._download_ann()
        self._download_vis()

    def _download_ann(self):
        """
        Download annotation files if necessary.
        All the vision-language datasets should have annotations of unified format.

        storage_path can be:
          (1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
          (2) basename/dirname: will be suffixed with base name of URL if dirname is provided.

        Local annotation paths should be relative.
        """
        anns = self.config.build_info.annotations

        splits = anns.keys()

        cache_root = registry.get_path("cache_root")

        for split in splits:
            info = anns[split]

            urls, storage_paths = info.get("url", None), info.storage

            if isinstance(urls, str):
                urls = [urls]
            if isinstance(storage_paths, str):
                storage_paths = [storage_paths]

            assert len(urls) == len(storage_paths)

            for url_or_filename, storage_path in zip(urls, storage_paths):
                # if storage_path is relative, make it full by prefixing with cache_root.
                if not os.path.isabs(storage_path):
                    storage_path = os.path.join(cache_root, storage_path)

                dirname = os.path.dirname(storage_path)
                if not os.path.exists(dirname):
                    os.makedirs(dirname)

                if os.path.isfile(url_or_filename):
                    src, dst = url_or_filename, storage_path
                    if not os.path.exists(dst):
                        shutil.copyfile(src=src, dst=dst)
                    else:
                        logging.info("Using existing file {}.".format(dst))
                else:
                    if os.path.isdir(storage_path):
                        # if only dirname is provided, suffix with basename of URL.
                        raise ValueError(
                            "Expecting storage_path to be a file path, got directory {}".format(
                                storage_path
                            )
                        )
                    else:
                        filename = os.path.basename(storage_path)

                    download_url(url=url_or_filename, root=dirname, filename=filename)

    def _download_vis(self):

        storage_path = self.config.build_info.get(self.data_type).storage
        storage_path = utils.get_cache_path(storage_path)

        if not os.path.exists(storage_path):
            warnings.warn(
                f"""
                The specified path {storage_path} for visual inputs does not exist.
                Please provide a correct path to the visual inputs or
                refer to datasets/download_scripts/README.md for downloading instructions.
                """
            )

    def build(self):
        """
        Create by split datasets inheriting torch.utils.data.Datasets.

        # build() can be dataset-specific. Overwrite to customize.
        """
        self.build_processors()

        build_info = self.config.build_info

        ann_info = build_info.annotations
        vis_info = build_info.get(self.data_type)

        datasets = dict()
        for split in ann_info.keys():
            if split not in ["train", "val", "test"]:
                continue

            is_train = split == "train"

            # processors
            vis_processor = (
                self.vis_processors["train"]
                if is_train
                else self.vis_processors["eval"]
            )
            text_processor = (
                self.text_processors["train"]
                if is_train
                else self.text_processors["eval"]
            )

            # annotation path
            ann_paths = ann_info.get(split).storage
            if isinstance(ann_paths, str):
                ann_paths = [ann_paths]

            abs_ann_paths = []
            for ann_path in ann_paths:
                if not os.path.isabs(ann_path):
                    ann_path = utils.get_cache_path(ann_path)
                abs_ann_paths.append(ann_path)
            ann_paths = abs_ann_paths

            # visual data storage path
            vis_path = os.path.join(vis_info.storage, split)

            if not os.path.isabs(vis_path):
                # vis_path = os.path.join(utils.get_cache_path(), vis_path)
                vis_path = utils.get_cache_path(vis_path)

            if not os.path.exists(vis_path):
                warnings.warn("storage path {} does not exist.".format(vis_path))

            # create datasets
            dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
            datasets[split] = dataset_cls(
                vis_processor=vis_processor,
                text_processor=text_processor,
                ann_paths=ann_paths,
                vis_root=vis_path,
            )

        return datasets


def load_dataset_config(cfg_path):
    cfg = OmegaConf.load(cfg_path).datasets
    cfg = cfg[list(cfg.keys())[0]]

    return cfg