Spaces:
Runtime error
Runtime error
File size: 17,601 Bytes
e4bd7f9 192e5fb e4bd7f9 192e5fb e4bd7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import PIL
import numpy as np
import torch
import torch.nn as nn
import torchvision
from yacs.config import CfgNode as CN
from PIL import ImageDraw
from segment_anything import build_sam, SamPredictor
from segment_anything.utils.amg import remove_small_regions
from PIL import ImageDraw, ImageFont
import groundingdino.util.transforms as T
from constants.constant import DARKER_COLOR_MAP, LIGHTER_COLOR_MAP, COLORS
from groundingdino import build_groundingdino
from groundingdino.util.predict import predict
from groundingdino.util.utils import clean_state_dict
def load_groundingdino_model(model_config_path, model_checkpoint_path):
import gc
args = CN.load_cfg(open(model_config_path, "r"))
model = build_groundingdino(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print('loading GroundingDINO:', load_res)
gc.collect()
_ = model.eval()
return model
class GroundingModule(nn.Module):
def __init__(self, device='cpu'):
super().__init__()
self.device = device
sam_checkpoint = "./checkpoints/sam_vit_h_4b8939.pth"
groundingdino_checkpoint = "./checkpoints/groundingdino_swint_ogc.pth"
groundingdino_config_file = "./eval_configs/GroundingDINO_SwinT_OGC.yaml"
self.grounding_model = load_groundingdino_model(groundingdino_config_file,
groundingdino_checkpoint).to(device)
self.grounding_model.eval()
sam = build_sam(checkpoint=sam_checkpoint).to(device)
sam.eval()
self.sam_predictor = SamPredictor(sam)
@torch.no_grad()
def prompt2mask(self, original_image, prompt, state, box_threshold=0.35, text_threshold=0.25, num_boxes=10):
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
image_np = np.array(original_image, dtype=np.uint8)
prompt = prompt.lower()
prompt = prompt.strip()
if not prompt.endswith("."):
prompt = prompt + "."
_, image_tensor = image_transform_grounding(original_image)
print('==> Box grounding with "{}"...'.format(prompt))
with torch.cuda.amp.autocast(enabled=True):
boxes, logits, phrases = predict(self.grounding_model,
image_tensor, prompt, box_threshold, text_threshold, device=self.device)
print(phrases)
# from PIL import Image, ImageDraw, ImageFont
H, W = original_image.size[1], original_image.size[0]
draw_img = original_image.copy()
draw = ImageDraw.Draw(draw_img)
color_boxes = []
color_masks = []
local_results = [original_image.copy() for _ in range(len(state['entity']))]
local2entity = {}
for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
for i, s in enumerate(state['entity']):
# print(label.lower(), i[0].lower(), label.lower() == i[0].lower())
if label.lower() == s[0].lower():
local2entity[obj_ind] = i
break
if obj_ind not in local2entity:
print('Color not found', label)
color = "grey" # In grey mode.
# tuple(np.random.randint(0, 255, size=3).tolist())
else:
for i, s in enumerate(state['entity']):
# print(label.lower(), i[0].lower(), label.lower() == i[0].lower())
if label.lower() == s[0].lower():
local2entity[obj_ind] = i
break
if obj_ind not in local2entity:
print('Color not found', label)
color = tuple(np.random.randint(0, 255, size=3).tolist())
else:
color = state['entity'][local2entity[obj_ind]][3]
color_boxes.append(color)
print(color_boxes)
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=10)
# font = ImageFont.load_default()
font = ImageFont.truetype('InputSans-Regular.ttf', int(H / 512.0 * 30))
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white", font=font)
if obj_ind in local2entity:
local_draw = ImageDraw.Draw(local_results[local2entity[obj_ind]])
local_draw.rectangle([x0, y0, x1, y1], outline=color, width=10)
local_draw.rectangle(bbox, fill=color)
local_draw.text((x0, y0), str(label), fill="white", font=font)
if boxes.size(0) > 0:
print('==> Mask grounding...')
boxes = boxes * torch.Tensor([W, H, W, H])
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
self.sam_predictor.set_image(image_np)
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes, image_np.shape[:2])
with torch.cuda.amp.autocast(enabled=True):
masks, _, _ = self.sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
num_obj = min(len(logits), num_boxes)
mask_map = None
full_img = None
for obj_ind in range(num_obj):
# box = boxes[obj_ind]
m = masks[obj_ind][0]
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
mask_map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
local_image = np.zeros((m.shape[0], m.shape[1], 3))
mask_map[m != 0] = obj_ind + 1
# color_mask = np.random.random((1, 3)).tolist()[0]
color_mask = np.array(color_boxes[obj_ind]) / 255.0
full_img[m != 0] = color_mask
local_image[m != 0] = color_mask
# if local_results[local2entity[obj_ind]] is not None:
# local_image[m == 0] = np.asarray(local_results[local2entity[obj_ind]])[m == 0]
local_image = (local_image * 255).astype(np.uint8)
local_image = PIL.Image.fromarray(local_image)
if local_results[local2entity[obj_ind]] is not None:
local_results[local2entity[obj_ind]] = PIL.Image.blend(local_results[local2entity[obj_ind]],
local_image, 0.5)
full_img = (full_img * 255).astype(np.uint8)
full_img = PIL.Image.fromarray(full_img)
draw_img = PIL.Image.blend(draw_img, full_img, 0.5)
return draw_img, local_results
# def draw_text(self, entity_state, entity, text):
# local_img = entity_state['grounding']['local'][entity]['image'].copy()
# H, W = local_img.width, local_img.height
# font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
#
# for x0, y0 in entity_state['grounding']['local'][entity]['text_positions']:
# color = entity_state['grounding']['local'][entity]['color']
# local_draw = ImageDraw.Draw(local_img)
# if hasattr(font, "getbbox"):
# bbox = local_draw.textbbox((x0, y0), str(text), font)
# else:
# w, h = local_draw.textsize(str(text), font)
# bbox = (x0, y0, w + x0, y0 + h)
#
# local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
# local_draw.text((x0, y0), str(text), fill="white", font=font)
# return local_img
def draw(self, original_image, entity_state, item=None):
original_image = original_image.copy()
W, H = original_image.width, original_image.height
font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
local_image = np.zeros((H, W, 3))
local_mask = np.zeros((H, W), dtype=bool)
def draw_item(img, item):
nonlocal local_image, local_mask
entity = entity_state['match_state'][item]
ei = entity_state['grounding']['local'][entity]
color = ei['color']
local_draw = ImageDraw.Draw(img)
for x0, y0, x1, y1 in ei['entity_positions']:
local_draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color],
width=int(min(H, W) / 512.0 * 10))
for x0, y0 in ei['text_positions']:
if hasattr(font, "getbbox"):
bbox = local_draw.textbbox((x0, y0), str(item), font)
else:
w, h = local_draw.textsize(str(item), font)
bbox = (x0, y0, w + x0, y0 + h)
local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
local_draw.text((x0, y0), str(item), fill="white", font=font)
for m in ei['masks']:
local_image[m != 0] = np.array(LIGHTER_COLOR_MAP[color]) / 255.0
local_mask = np.logical_or(local_mask, m)
# local_image = (local_image * 255).astype(np.uint8)
# local_image = PIL.Image.fromarray(local_image)
# img = PIL.Image.blend(img, local_image, 0.5)
return img
if item is None:
for item in entity_state['match_state'].keys():
original_image = draw_item(original_image, item)
else:
original_image = draw_item(original_image, item)
local_image[local_mask == 0] = (np.array(original_image) / 255.0)[local_mask == 0]
local_image = (local_image * 255).astype(np.uint8)
local_image = PIL.Image.fromarray(local_image)
original_image = PIL.Image.blend(original_image, local_image, 0.5)
return original_image
@torch.no_grad()
def prompt2mask2(self, original_image, prompt, state, box_threshold=0.25,
text_threshold=0.2, iou_threshold=0.5, num_boxes=10):
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
image_np = np.array(original_image, dtype=np.uint8)
prompt = prompt.lower()
prompt = prompt.strip()
if not prompt.endswith("."):
prompt = prompt + "."
_, image_tensor = image_transform_grounding(original_image)
print('==> Box grounding with "{}"...'.format(prompt))
with torch.cuda.amp.autocast(enabled=True):
boxes, logits, phrases = predict(self.grounding_model,
image_tensor, prompt, box_threshold, text_threshold, device=self.device)
print('==> Box grounding results {}...'.format(phrases))
# boxes_filt = boxes.cpu()
# # use NMS to handle overlapped boxes
# print(f"==> Before NMS: {boxes_filt.shape[0]} boxes")
# nms_idx = torchvision.ops.nms(boxes_filt, logits, iou_threshold).numpy().tolist()
# boxes_filt = boxes_filt[nms_idx]
# phrases = [phrases[idx] for idx in nms_idx]
# print(f"==> After NMS: {boxes_filt.shape[0]} boxes")
# boxes = boxes_filt
# from PIL import Image, ImageDraw, ImageFont
H, W = original_image.size[1], original_image.size[0]
draw_img = original_image.copy()
draw = ImageDraw.Draw(draw_img)
color_boxes = []
color_masks = []
entity_dict = {}
for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
if label not in entity_dict:
entity_dict[label] = {
'color': COLORS[len(entity_dict) % (len(COLORS) - 1)],
# 'image': original_image.copy(),
'text_positions': [],
'entity_positions': [],
'masks': []
}
color = entity_dict[label]['color']
color_boxes.append(DARKER_COLOR_MAP[color])
color_masks.append(LIGHTER_COLOR_MAP[color])
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color], width=10)
font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
draw.text((x0, y0), str(label), fill="white", font=font)
# local_img = entity_dict[label]['image']
# local_draw = ImageDraw.Draw(local_img)
# local_draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color], width=10)
entity_dict[label]['text_positions'].append((x0, y0))
entity_dict[label]['entity_positions'].append((x0, y0, x1, y1))
# local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
# local_draw.text((x0, y0), str(label), fill="white", font=font)
if boxes.size(0) > 0:
print('==> Mask grounding...')
boxes = boxes * torch.Tensor([W, H, W, H])
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
self.sam_predictor.set_image(image_np)
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes,
image_np.shape[:2]).to(self.device)
with torch.cuda.amp.autocast(enabled=True):
masks, _, _ = self.sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
mask_map = None
full_img = None
for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
m = masks[obj_ind][0]
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
mask_map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
# local_image = np.zeros((m.shape[0], m.shape[1], 3))
mask_map[m != 0] = obj_ind + 1
color_mask = np.array(color_masks[obj_ind]) / 255.0
full_img[m != 0] = color_mask
entity_dict[label]['masks'].append(m)
# local_image[m != 0] = color_mask
# local_image[m == 0] = (np.array(entity_dict[label]['image']) / 255.0)[m == 0]
#
# local_image = (local_image * 255).astype(np.uint8)
# local_image = PIL.Image.fromarray(local_image)
# entity_dict[label]['image'] = PIL.Image.blend(entity_dict[label]['image'], local_image, 0.5)
full_img = (full_img * 255).astype(np.uint8)
full_img = PIL.Image.fromarray(full_img)
draw_img = PIL.Image.blend(draw_img, full_img, 0.5)
print('==> Entity list: {}'.format(list(entity_dict.keys())))
return draw_img, entity_dict
|