File size: 21,851 Bytes
004e7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c5fe74d8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Adding package root to sys.path: /home/mafzaal/source/lets-talk/py-src\n",
      "Current notebook directory: /home/mafzaal/source/lets-talk/py-src/notebooks\n",
      "Project root: /home/mafzaal/source/lets-talk\n"
     ]
    }
   ],
   "source": [
    "import sys\n",
    "import os\n",
    "\n",
    "# Add the project root to the Python path\n",
    "package_root = os.path.abspath(os.path.join(os.getcwd(), \"../\"))\n",
    "print(f\"Adding package root to sys.path: {package_root}\")\n",
    "if package_root not in sys.path:\n",
    "\tsys.path.append(package_root)\n",
    "\n",
    "\n",
    "notebook_dir = os.getcwd()\n",
    "print(f\"Current notebook directory: {notebook_dir}\")\n",
    "# change to the directory to the root of the project\n",
    "project_root = os.path.abspath(os.path.join(os.getcwd(), \"../../\"))\n",
    "print(f\"Project root: {project_root}\")\n",
    "os.chdir(project_root)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1168fdc5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import nest_asyncio\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "12ecd1db",
   "metadata": {},
   "outputs": [],
   "source": [
    "import lets_talk.chains as chains\n",
    "import lets_talk.prompts as prompts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "1b6bbe57",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<module 'lets_talk.prompts' from '/home/mafzaal/source/lets-talk/py-src/lets_talk/prompts.py'>"
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# hot reload the module\n",
    "import importlib\n",
    "importlib.reload(chains)\n",
    "importlib.reload(prompts)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "65e5ea03",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reponse = chains.tone_check_chain.invoke({\"question\": \"I am so happy to be here!\"})\n",
    "reponse.content.lower() == \"yes\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "119cf326",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reponse = chains.tone_check_chain.invoke({\"question\": \"Go to hell!\"})\n",
    "reponse.content.lower() == \"yes\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "ada70fe7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from lets_talk.rag import rag_chain\n",
    "reponse = rag_chain.invoke({\"question\": \"Who is the data guy?\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "5d878cf2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"The Data Guy refers to Muhammad Afzaal, a data science expert and the author of the blog at [thedataguy.pro](https://thedataguy.pro). His work focuses on various topics in data science, AI evaluation, RAG systems, and metric-driven development, providing practical insights and frameworks for implementing these concepts effectively.\\n\\nIf you're interested in specific topics such as RAG systems, AI research agents, or data strategy, feel free to ask!\""
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reponse[\"response\"].content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "9689e103",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I don't know the speed of light, but I can help you with topics related to data science, AI evaluation, RAG systems, and more. If you're interested in understanding how to evaluate AI agents or implement RAG systems, feel free to ask! You can also explore more on these topics at [TheDataGuy's blog](https://thedataguy.pro).\""
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from lets_talk.rag import rag_chain\n",
    "reponse = rag_chain.invoke({\"question\": \"What is speed of light!\"})\n",
    "reponse[\"response\"].content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "80979f2c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I can sense that you're feeling really frustrated right now, and that's completely valid. We all have moments like that. 🌧️ \\n\\nIf there's something specific on your mind, I'm here to listen and help in any way I can. Let's turn this around and find a brighter perspective together! 🌈\""
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from lets_talk.chains import rude_query_answer_chain\n",
    "reponse = rude_query_answer_chain.invoke({\"question\": \"Go to hell!\"})\n",
    "\n",
    "reponse.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "21a54913",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I understand that you might be feeling frustrated or disappointed, and that's completely valid. It's okay to express those feelings! Let's focus on finding something positive together. What’s something that brings you joy or makes you smile? 🌈\""
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from lets_talk.chains import rude_query_answer_chain\n",
    "reponse = rude_query_answer_chain.invoke({\"question\": \"aweful!\"})\n",
    "\n",
    "reponse.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "661c3b55",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'**Input:** \"Tell me a joke!\"\\n\\n**Output:** \"I love that you\\'re looking for some humor! Laughter is such a wonderful way to brighten the day. Here’s a light-hearted joke for you: Why did the scarecrow win an award? Because he was outstanding in his field! 🌾😄 Keep smiling!\"'"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from lets_talk.chains import rude_query_answer_chain\n",
    "reponse = rude_query_answer_chain.invoke({\"question\": \"tell me a joke!\"})\n",
    "\n",
    "reponse.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "1600c552",
   "metadata": {},
   "outputs": [],
   "source": [
    "import lets_talk.agent as agent\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "id": "ebf7366d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<module 'lets_talk.agent' from '/home/mafzaal/source/lets-talk/py-src/lets_talk/agent.py'>"
      ]
     },
     "execution_count": 79,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "importlib.reload(agent)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "id": "ee9f31e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "uncompiled_graph = agent.build_graph()\n",
    "graph =  uncompiled_graph.compile()\n",
    "\n",
    "#show the graph\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "id": "1204c3c9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "         +-----------+          \n",
      "         | __start__ |          \n",
      "         +-----------+          \n",
      "                *               \n",
      "                *               \n",
      "                *               \n",
      "    +---------------------+     \n",
      "    | check_question_tone |     \n",
      "    +---------------------+     \n",
      "           .        ..          \n",
      "         ..           .         \n",
      "        .              ..       \n",
      "+----------+             .      \n",
      "| retrieve |           ..       \n",
      "+----------+          .         \n",
      "           *        ..          \n",
      "            **    ..            \n",
      "              *  .              \n",
      "           +-------+            \n",
      "           | agent |            \n",
      "           +-------+            \n",
      "           *        .           \n",
      "         **          ..         \n",
      "        *              .        \n",
      "  +--------+       +---------+  \n",
      "  | action |       | __end__ |  \n",
      "  +--------+       +---------+  \n"
     ]
    }
   ],
   "source": [
    "# from IPython.display import Image, display\n",
    "# display(Image(graph.get_graph().draw_png()))\n",
    "\n",
    "print(graph.get_graph().draw_ascii())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "id": "94889b85",
   "metadata": {},
   "outputs": [],
   "source": [
    "graph_chain = agent.create_agent_chain(uncompiled_graph=uncompiled_graph)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "id": "f8a9985d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'messages': [HumanMessage(content='tell me a joke!', additional_kwargs={}, response_metadata={}, id='df2b46db-4109-448b-85a5-4fb91b0d1f36'),\n",
       "  AIMessage(content=\"I don't know any jokes, but I can share some insightful content about data engineering or AI evaluation! If you're interested, let me know!\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 30, 'prompt_tokens': 990, 'total_tokens': 1020, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_dbaca60df0', 'id': 'chatcmpl-BWabqM5r06LNi5Ty3VRxWZwXYqIUk', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='run--9874e8ab-653a-45f2-be45-0f3ce9de8ee7-0', usage_metadata={'input_tokens': 990, 'output_tokens': 30, 'total_tokens': 1020, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})],\n",
       " 'context': 'link: https://thedataguy.pro/blog/integrations-and-observability-with-ragas/\\n\\n*How are you evaluating your AI agents? What challenges have you encountered in measuring agent performance? If you\\'re facing specific evaluation hurdles, don\\'t hesitate to [reach out](https://www.linkedin.com/in/muhammadafzaal/)—we\\'d love to help!*\\n\\n---link: https://thedataguy.pro/blog/advanced-metrics-and-customization-with-ragas/\\n\\n# Prepare input for prompt\\n        prompt_input = TechnicalAccuracyInput(\\n            question=question,\\n            context=context,\\n            response=response,\\n            programming_language=programming_language\\n        )\\n        \\n        # Generate evaluation\\n        evaluation = await self.evaluation_prompt.generate(\\n            data=prompt_input, llm=self.llm, callbacks=callbacks\\n        )\\n        \\n        return evaluation.score\\n```\\n## Using the Custom Metric\\nTo use the custom metric, simply include it in your evaluation pipeline:\\n\\n---link: https://thedataguy.pro/blog/data-is-king/\\n\\nRemember: in the age of AI, your data strategy isn\\'t just supporting your business strategy—increasingly, it *is* your business strategy.\\n## Ready to Make Data Your Competitive Advantage?\\n\\nDon\\'t let valuable data opportunities slip away. Whether you\\'re just beginning your data journey or looking to enhance your existing strategy, I can help transform your approach to this critical business asset.\\n\\n### Let\\'s Connect\\nConnect with me on [LinkedIn](https://www.linkedin.com/in/muhammadafzaal/) to discuss how I can help your organization harness the power of data.\\n\\n---link: https://thedataguy.pro/blog/generating-test-data-with-ragas/\\n\\nEssentially, the default transformations build a knowledge graph populated with embedded, filtered document chunks and corresponding simple, extractive question-answer pairs.\\n\\n**Spotlight: Query Synthesizers (via `self.generate()` and `default_query_distribution`)**\\n\\nThe `self.generate()` method, called by `generate_with_langchain_docs`, is responsible for taking the foundational graph and creating the final, potentially complex, test questions using **Query Synthesizers** (also referred to as \"evolutions\" or \"scenarios\").',\n",
       " 'is_rude': False}"
      ]
     },
     "execution_count": 74,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "response = graph_chain.invoke({\"question\": \"tell me a joke!\"})\n",
    "response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "6b34229f",
   "metadata": {},
   "outputs": [],
   "source": [
    "os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "id": "8d970d22",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'messages': [HumanMessage(content='Go to hell!', additional_kwargs={}, response_metadata={}, id='ada716be-d732-4df7-813f-8e4134bf86e6'),\n",
       "  AIMessage(content=\"I can sense that you're feeling really frustrated right now, and that's completely valid. We all have moments like that. 🌧️ \\n\\nIf there's something specific on your mind, I'm here to listen and help in any way I can. Let's turn this around and find a brighter perspective together! 🌈\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 61, 'prompt_tokens': 401, 'total_tokens': 462, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_129a36352a', 'id': 'chatcmpl-BWadnZqMM9ST3mPc8sigjYQNZQwdz', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='run--f08d6e19-838d-4594-8b19-4422ef2eddf3-0', usage_metadata={'input_tokens': 401, 'output_tokens': 61, 'total_tokens': 462, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})],\n",
       " 'is_rude': True}"
      ]
     },
     "execution_count": 82,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "response = graph_chain.invoke({\"question\": \"Go to hell!\"})\n",
    "response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "id": "0fdd5ceb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I can sense that you're feeling really frustrated right now, and that's completely valid. We all have moments like that. 🌧️ \\n\\nIf there's something specific on your mind, I'm here to listen and help in any way I can. Let's turn this around and find a brighter perspective together! 🌈\""
      ]
     },
     "execution_count": 83,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "answer = agent.parse_output(response)\n",
    "answer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "id": "b177d03c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'messages': [HumanMessage(content='Who are you?', additional_kwargs={}, response_metadata={}, id='113cb4b2-040e-4bfd-801e-9fb32bade492'),\n",
       "  AIMessage(content=\"I am TheDataGuy Chat, your specialized assistant for topics related to data science, AI evaluation, and metric-driven development, drawing insights from Muhammad Afzaal's blog at [thedataguy.pro](https://thedataguy.pro). My expertise includes:\\n\\n- RAG (Retrieval-Augmented Generation) systems and their implementation\\n- Evaluation frameworks for AI applications\\n- Building and assessing AI research agents\\n- Data strategy and its significance for business success\\n\\nIf you have questions about these topics or need practical advice, feel free to ask! You can also explore more insights on the blog for in-depth articles and tutorials.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 128, 'prompt_tokens': 988, 'total_tokens': 1116, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_dbaca60df0', 'id': 'chatcmpl-BWacI6xSsiD5qSGUk867wK3FE4aIc', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='run--84279564-3a7b-4fec-a8a0-78db23342062-0', usage_metadata={'input_tokens': 988, 'output_tokens': 128, 'total_tokens': 1116, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})],\n",
       " 'context': 'link: https://thedataguy.pro/blog/integrations-and-observability-with-ragas/\\n\\n*How are you evaluating your AI agents? What challenges have you encountered in measuring agent performance? If you\\'re facing specific evaluation hurdles, don\\'t hesitate to [reach out](https://www.linkedin.com/in/muhammadafzaal/)—we\\'d love to help!*\\n\\n---link: https://thedataguy.pro/blog/advanced-metrics-and-customization-with-ragas/\\n\\n# Prepare input for prompt\\n        prompt_input = TechnicalAccuracyInput(\\n            question=question,\\n            context=context,\\n            response=response,\\n            programming_language=programming_language\\n        )\\n        \\n        # Generate evaluation\\n        evaluation = await self.evaluation_prompt.generate(\\n            data=prompt_input, llm=self.llm, callbacks=callbacks\\n        )\\n        \\n        return evaluation.score\\n```\\n## Using the Custom Metric\\nTo use the custom metric, simply include it in your evaluation pipeline:\\n\\n---link: https://thedataguy.pro/blog/data-is-king/\\n\\nRemember: in the age of AI, your data strategy isn\\'t just supporting your business strategy—increasingly, it *is* your business strategy.\\n## Ready to Make Data Your Competitive Advantage?\\n\\nDon\\'t let valuable data opportunities slip away. Whether you\\'re just beginning your data journey or looking to enhance your existing strategy, I can help transform your approach to this critical business asset.\\n\\n### Let\\'s Connect\\nConnect with me on [LinkedIn](https://www.linkedin.com/in/muhammadafzaal/) to discuss how I can help your organization harness the power of data.\\n\\n---link: https://thedataguy.pro/blog/generating-test-data-with-ragas/\\n\\nEssentially, the default transformations build a knowledge graph populated with embedded, filtered document chunks and corresponding simple, extractive question-answer pairs.\\n\\n**Spotlight: Query Synthesizers (via `self.generate()` and `default_query_distribution`)**\\n\\nThe `self.generate()` method, called by `generate_with_langchain_docs`, is responsible for taking the foundational graph and creating the final, potentially complex, test questions using **Query Synthesizers** (also referred to as \"evolutions\" or \"scenarios\").',\n",
       " 'is_rude': False}"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "response = graph_chain.invoke({\"question\": \"Who are you?\"})\n",
    "response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "id": "db16940e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I am TheDataGuy Chat, your specialized assistant for topics related to data science, AI evaluation, and metric-driven development, drawing insights from Muhammad Afzaal's blog at [thedataguy.pro](https://thedataguy.pro). My expertise includes:\\n\\n- RAG (Retrieval-Augmented Generation) systems and their implementation\\n- Evaluation frameworks for AI applications\\n- Building and assessing AI research agents\\n- Data strategy and its significance for business success\\n\\nIf you have questions about these topics or need practical advice, feel free to ask! You can also explore more insights on the blog for in-depth articles and tutorials.\""
      ]
     },
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent.parse_output(response)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}