File size: 1,827 Bytes
8f86f02
4a9540b
 
258e5e7
4a9540b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, TextStreamer
from peft import PeftModel
import gradio as gr

# Load base model and processor
base_model_id = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
adapter_model_id = "adarsh3601/my_gemma_pt3"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

processor = AutoProcessor.from_pretrained(base_model_id)
model = AutoModelForImageTextToText.from_pretrained(base_model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto")

# Apply adapter (LoRA)
model = PeftModel.from_pretrained(model, adapter_model_id)
model.eval()

streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)

# Helper to format messages using the chat template
def format_chat(messages):
    formatted = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    return formatted

# Chat function
def chat(message, history):
    messages = []

    # Format history into messages
    for user_msg, bot_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": bot_msg})

    messages.append({"role": "user", "content": message})
    prompt = format_chat(messages)

    inputs = processor(prompt, return_tensors="pt").to(device)

    with torch.no_grad():
        outputs = model.generate(**inputs, max_new_tokens=512, streamer=streamer)

    decoded = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    response = decoded.split("<end_of_turn>")[0].strip().split("<start_of_turn>model")[-1].strip()
    return response

# Gradio interface
gui = gr.ChatInterface(fn=chat, title="Gemma-3 Chatbot", description="Fine-tuned on adarsh3601/my_gemma_pt3")

gui.launch()