File size: 10,738 Bytes
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850c648
 
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850c648
 
e4e56ea
 
 
 
 
850c648
e4e56ea
 
 
 
850c648
e4e56ea
 
850c648
 
e4e56ea
850c648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e56ea
850c648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e56ea
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import streamlit as st
import os
import pytesseract
from PIL import Image
import time
from utils import extract_frames_interval, extract_frames_pyscenedetect


st.title('๐Ÿ–ผ๏ธ Step 3: Video Processing (Frame Extraction & OCR)')


# Check if video path exists
if ('video_path' not in st.session_state or 
    not st.session_state['video_path'] or 
    not os.path.exists(st.session_state['video_path'])
    ):
    st.warning('Video file not found. Please go back to the **๐Ÿ“ค Upload** page and process a video first.')
    st.stop()

video_path = st.session_state['video_path']
st.write(f'Video file to process: `{os.path.basename(video_path)}`')

# 
# ==================================================================
# 

col_method, col_config = st.columns(2)

# --- Method ---
# with col_model.expander('**MODEL**', expanded=True):
with col_method.container(border=True):
    # extraction_method = st.selectbox(
    #     'Extraction method:', 
    #     ('interval', 'video2slides', 'pyscenedetect'), 
    #     index=0
    # )
    extraction_method = st.radio(
        'Extraction method:', 
        ('interval', 'video2slides', 'pyscenedetect'), 
        index=0, 
        horizontal=True, 
    )

    # col_config_frame_interval, col_config_ocr_lang = st.columns(2)
    # frame_interval = col_config_frame_interval.slider('Extract frames every `X` seconds:', min_value=1, max_value=60, value=5, step=1)
    # ocr_lang = col_config_ocr_lang.text_input('OCR Language(s) (e.g. `rus`, `rus+eng`):', value='rus')
    ocr_lang = st.text_input('OCR Language(s) (e.g. `rus`, `rus+eng`):', value='rus')

# --- Configuration ---
with col_config.expander(f'**`{extraction_method}` METHOD CONFIG**', expanded=True):
    match extraction_method:
        case 'interval':
            extraction_interval = st.number_input(
                'Frames extraction interval:', 
                min_value=0, max_value=25, step=1, format='%i', value=5, 
                help='Extract frames every `x` seconds'
            )
        case 'video2slides':
            print('video2slides')
        case 'pyscenedetect':
            extraction_threshold = st.number_input(
                'Frames extraction threshold:', 
                min_value=0.1, max_value=10.0, step=0.1, format='%f', value=1.5, 
            )


# --- Semantic Segmentation Placeholder ---
# st.markdown("---")
# --- Tesseract Configuration (Optional but recommended) ---
# Uncomment and set the path if tesseract is not in your PATH
# pytesseract.pytesseract.tesseract_cmd = r'/path/to/your/tesseract' # Example: '/usr/bin/tesseract' or 'C:\Program Files\Tesseract-OCR\tesseract.exe'




# # --- Frame Extraction and OCR ---
# st.subheader('OCR')

_, col_button_extract, _ = st.columns([2, 1, 2])
if col_button_extract.button('Extract Frames', type='primary', use_container_width=True):
    # st.session_state['ocr_text'] = None  # clear previous results
    st.session_state['frames_paths'] = []
    # all_ocr_results = []

    col_info, col_complete, col_next = st.columns(3)

    match extraction_method:
        case 'interval':
            with st.spinner(f'Extracting frames every {extraction_interval} seconds (using interval method)..'):
                start_time = time.time()
                frames_dir, frame_paths = extract_frames_interval(video_path, 'frames_pyscenedetect', interval_sec=extraction_interval)
                extract_time = time.time() - start_time
                if frames_dir and frame_paths:
                    st.session_state['frames_dir'] = frames_dir
                    st.session_state['frames_paths'] = frame_paths  # store paths
                    col_info.success(f'Extracted {len(frame_paths)} frames in {extract_time:.2f}s.')
                else:
                    col_info.error('Failed to extract frames')
                    st.stop()
        case 'video2slides':
            pass
        case 'pyscenedetect':
            with st.spinner(f'Extracting frames with `threshold={extraction_threshold}` (using pyscenedetect method)..'):
                start_time = time.time()
                frames_dir, frame_paths = extract_frames_pyscenedetect(video_path, 'frames_pyscenedetect', threshold=extraction_threshold)
                extract_time = time.time() - start_time
                if frames_dir and frame_paths:
                    st.session_state['frames_dir'] = frames_dir
                    st.session_state['frames_paths'] = frame_paths  # store paths
                    col_info.success(f'Extracted {len(frame_paths)} frames in {extract_time:.2f}s.')
                else:
                    col_info.error('Failed to extract frames')
                    st.stop()


    if st.session_state['frames_paths']:
        total_frames = len(st.session_state['frames_paths'])
        # col_info.write(f'Performing OCR on {total_frames} frames..')
        # ocr_progress = st.progress(0)
        start_ocr_time = time.time()

        extracted_texts = []
        processed_count = 0

        # Use columns to display some example frames
        max_display_frames = 6
        display_cols = st.columns(min(max_display_frames, total_frames) if total_frames > 0 else 1)
        display_idx = 0


        # Process frames in batches or one by one
        for i, frame_path in enumerate(st.session_state['frames_paths']):
            img = Image.open(frame_path)
            # Extract timestamp from filename (assuming format frame_XXXXXX.png)
            try:
                secs = int(os.path.basename(frame_path).split('_')[1].split('.')[0])
                timestamp = time.strftime('%H:%M:%S', time.gmtime(secs))
                extracted_texts.append({'timestamp': timestamp, 'image': img})
            except:
                extracted_texts.append({'timestamp': 'N/A', 'image': img})  # fallback if filename parse fails

            # Display some examples
            if display_idx < max_display_frames and display_idx < len(display_cols):
                with display_cols[display_idx]:
                    st.image(img, caption=f'Frame (t={timestamp})', use_container_width=True)
                display_idx += 1

            processed_count += 1
            # ocr_progress.progress(processed_count / total_frames)

#         # Process frames in batches or one by one
#         for i, frame_path in enumerate(st.session_state['frames_paths']):
#             try:
#                 img = Image.open(frame_path)
#                 # --- Potential Preprocessing/Filtering ---
#                 # Add logic here if needed:
#                 # - Detect if frame likely contains text (e.g., check contrast, edges)
#                 # - If segmentation was implemented, crop to slide regions here
#                 # --- Perform OCR ---
#                 text = pytesseract.image_to_string(img, lang=ocr_lang)
#                 # --- Basic Text Cleaning/Filtering ---
#                 cleaned_text = text.strip()
#                 if cleaned_text and len(cleaned_text) > 10:  # filter very short/noisy results
#                     # Extract timestamp from filename (assuming format frame_XXXXXX.png)
#                     try:
#                         secs = int(os.path.basename(frame_path).split('_')[1].split('.')[0])
#                         timestamp = time.strftime('%H:%M:%S', time.gmtime(secs))
#                         extracted_texts.append({'timestamp': timestamp, 'text': cleaned_text})
#                     except:
#                         extracted_texts.append({'timestamp': 'N/A', 'text': cleaned_text})  # fallback if filename parse fails


#                     # Display some examples
#                     if display_idx < max_display_frames and display_idx < len(display_cols):
#                         with display_cols[display_idx]:
#                             st.image(img, caption=f'Frame (t={timestamp})', use_container_width=True)
#                             st.text(f'OCR:\n{cleaned_text[:100]}..')  # show snippet
#                         display_idx += 1


#                 processed_count += 1
#                 ocr_progress.progress(processed_count / total_frames)

#             except Exception as ocr_err:
#                 col_info.warning(f'Could not perform OCR on {os.path.basename(frame_path)}: {ocr_err}')
#                 processed_count += 1  # still count as processed
#                 ocr_progress.progress(processed_count / total_frames)

#         ocr_time = time.time() - start_ocr_time
#         col_complete.success(f'OCR processing finished in {ocr_time:.2f}s.')

#         # --- Aggregate and Deduplicate OCR Text ---
#         # Simple approach: Combine unique text blocks
#         final_ocr_text = ""
#         seen_texts = set()
#         last_text = ""
#         min_similarity_threshold = 0.8  # requires a library like `thefuzz` or similar for proper check
#                                         # basic check: avoid exact consecutive duplicates

#         for item in extracted_texts:
#             current_text_block = item['text'].strip()
            
#             # Basic check: Only add if significantly different from the last block
#             # A more robust check would involve sequence matching or fuzzy matching
#             is_duplicate = False
#             if last_text:
#                 # Simple check: exact match or near-exact length/content start?
#                 if (current_text_block == last_text or 
#                     (abs(len(current_text_block) - len(last_text)) < 10 and 
#                      current_text_block.startswith(last_text[:20]))
#                     ):
#                     is_duplicate = True  # likely a duplicate from consecutive frames

#             if current_text_block and not is_duplicate:  # only add non-empty, non-duplicate text
#                 final_ocr_text += f"\n\n--- Text from frame around {item['timestamp']} ---\n"
#                 final_ocr_text += current_text_block
#                 last_text = current_text_block  # update last text added

#         st.session_state['ocr_text'] = final_ocr_text.strip()

#         if st.session_state['ocr_text']:
#             col_complete.info('OCR processing complete.')
#             col_next.page_link('ui_summarize.py', label='Next Step: **๐Ÿ“ Summarize**', icon='โžก๏ธ')
#         else:
#             col_complete.warning('No significant text found via OCR')


# # --- Display OCR Results ---
# st.subheader('Aggregated OCR Text')
# if 'ocr_text' in st.session_state and st.session_state['ocr_text']:
#     st.text_area("Extracted Text from Frames", st.session_state['ocr_text'], height=400)
# else:
#     st.info('OCR has not been run or no text was detected')



# st.divider()

# st.subheader('Semantic Segmentation')