File size: 14,237 Bytes
e4e56ea
 
 
 
 
 
 
6edd739
e4e56ea
 
 
 
 
 
 
 
 
 
 
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
 
 
 
 
 
 
e4e56ea
 
 
 
 
 
 
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e56ea
6edd739
 
 
 
 
 
 
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850c648
 
 
 
 
e4e56ea
 
850c648
 
 
 
e4e56ea
6edd739
 
 
 
 
 
 
e4e56ea
 
 
 
 
6edd739
 
e4e56ea
6edd739
 
e4e56ea
 
 
 
 
 
 
 
850c648
 
 
 
 
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
e4e56ea
 
 
 
 
 
6edd739
 
 
e4e56ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
e4e56ea
 
 
 
 
 
 
 
 
 
850c648
e4e56ea
 
 
 
 
 
 
 
6edd739
e4e56ea
 
 
6edd739
 
 
e4e56ea
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import streamlit as st
from streamlit_extras.stylable_container import stylable_container

import os
import time
import pathlib
from datetime import timedelta
import requests

os.environ['STREAMLIT_SERVER_ENABLE_FILE_WATCHER'] = 'false'
import whisper  # openai-whisper
import torch  # check for GPU availability

# from models.loader import load_model_sst

from transcriber import Transcription
import matplotlib.colors as mcolors


######

# import gdown
# import tempfile
from utils import load_config, get_secret_api

st.session_state.secret_api = get_secret_api()


# # create & close the temp file so it's not locked
# tmp = tempfile.NamedTemporaryFile(delete=False)
# tmp_path = tmp.name
# tmp.close()

# gdown.download(id=load_config()['links']['secret_api_id'], output=tmp_path, quiet=True)
# tmp.seek(0)
# st.session_state.secret_api = tmp.read()#.decode('utf-8')
# os.remove(tmp_path)



# with tempfile.NamedTemporaryFile(delete=False) as tmp:
#     gdown.download(id=load_config()['links']['secret_api_id'], output=tmp.name, quiet=True)
#     tmp.seek(0)
#     st.session_state.secret_api = tmp.read().decode('utf-8')

# tmp_path = tmp.name
# tmp.close()
# os.remove(tmp_path)

######


trash_str = 'Субтитры создавал DimaTorzok'


st.title('🎙️ Step 2: Speech-to-Text (ASR/STT)')

# Check if audio path exists from previous step
if 'audio_path' not in st.session_state or not st.session_state['audio_path'] or not os.path.exists(st.session_state['audio_path']):
    st.warning('Audio file not found. Please go back to the "**📤 Upload**" page and process a video first.')
    st.stop()


# st.write(f'Audio file to process: `{os.path.basename(audio_path)}`')
st.write(f'Processing audio `{st.session_state.video_input_title}` from video input')

if 'start_time' not in st.session_state:
    st.session_state.start_time = 0

# st.audio(audio_path)
# format='audio/wav', 
st.audio(st.session_state.audio_path, start_time=st.session_state.start_time)

# 
# ==================================================================
# 

col_model, col_config = st.columns(2)

# --- Model ---
# with col_model.expander('**MODEL**', expanded=True):
with col_model.container(border=True):
    model_option = st.selectbox(
        'SST Model:', 
        ['whisper', 'faster-whisper', 'distill-whisper', 'giga'], 
        index=0
    )


# sst_model = load_model_sst(model_option)


# --- Configuration ---
with col_config.expander('**CONFIG**', expanded=True):
    # Determine device
    default_device = 'cuda' if torch.cuda.is_available() else 'cpu'
    device = st.radio(
        'Compute device:', 
        ('cuda', 'cpu'), 
        index=0 if default_device == 'cuda' else 1, 
        horizontal=True, 
        disabled=not torch.cuda.is_available()
    )

    if device == 'cuda' and not torch.cuda.is_available():
        st.warning('CUDA selected but not available, falling back to CPU')
        device = 'cpu'

    whisper_model_option = st.selectbox(
        'Whisper model type:',
        ['tiny', 'base', 'small', 'medium', 'large-v3', 'turbo'], 
        index=5
    )

    pauses = st.checkbox('pauses', value=False)

    # from models.models_sst import Whisper
    # Whisper.config()


##
## --- Transcription ---
##

_, col_button_trancribe, _ = st.columns([2, 1, 2])
if col_button_trancribe.button('Transcribe', type='primary', use_container_width=True):
    # if input_files:
        # pass
    # else:
    #     st.error("Please select a file")
    st.session_state.transcript = None  # clear previous transcript
    col_info, col_complete, col_next = st.columns(3)

    try:
        with st.spinner(f'Loading Whisper `{whisper_model_option}` model and transcribing..'):

            # #-- Load whisper model
            # start = time.time()
            # # Let Whisper handle device placement if possible
            # model = whisper.load_model(whisper_model_option, device=device)
            # # load_time = 
            # col_info.info(f'Model loaded in {time.time() - start:.2f} seconds.')

            #-- Perform transcription
            start = time.time()
            # print('################################')
            # print(st.session_state.audio_path)
            # print('################################')


            # with open(audio_path, "rb") as audio_file:
            #     transcript = openai.Audio.transcribe("whisper-1", audio_file)



            # st.write(st.session_state.secret_api)


            # response = requests.post(
            #     f'{st.session_state.secret_api}/post', 
            #     f'https://535e-104-196-233-103.ngrok-free/transcribe', 
            #     # params={'username': username, 'filename': uploaded_pdf.name},
            #     params={'filename': st.session_state.audio_path}, 
            #     # files={'uploaded_file': uploaded_pdf.getvalue()}
            #     # files={'uploaded_file': whisper.load_audio(st.session_state.audio_path)}
            #     files={'file': 'string'}
            #     # json={'1': '2'}
            # )
            # st.write(response)
            #     # import sys
            #     # st.write(sys.sizeof(f))
            # st.write(response.text)



            with open(st.session_state.audio_path, 'rb') as f:
                response = requests.post(
                    # f'{st.session_state.secret_api}/transcribe_faster_whisper', 
                    f'{st.session_state.secret_api}/transcribe', 
                    # params={'filename': st.session_state.audio_path}, 
                    # files={'uploaded_file': uploaded_pdf.getvalue()}
                    # files={'uploaded_file': whisper.load_audio(st.session_state.audio_path)}
                    # data={'model': whisper_model_option},
                    params={'model': whisper_model_option},
                    files={'file': f}
                )
                st.write(response)
                response = response.json()

            # st.write(response['inference_time'])
            # st.write(response['model_name'])

            # st.write(response['form'])

            st.session_state['transcript'] = response['output']

            # st.session_state['transcript'] = result['text']


            st.session_state.transcript = Transcription(st.session_state.audio_path)
            # # st.session_state.transcript = Transcription([audio_path])
            # # st.session_state.transcript.transcribe(whisper_model_option)
            # # st.markdown(model.name)
            # st.session_state.transcript.transcribe(model)
            # # result = model.transcribe(audio_path, fp16=(device == 'cuda'))  # use fp16 on GPU for speed/memory
            st.session_state.transcript.output = response['output']

            transcribe_time = time.time() - start

        # st.session_state['transcript'] = result['text']
        # st.session_state['transcript'] = st.session_state.transcript
        # Store segments for timestamping/structuring later

        # print(len(st.session_state.transcript['segments']))
        # st.session_state['transcript_segments'] = st.session_state.transcript['segments']

        col_complete.success(f'Transcription complete! (Took {transcribe_time:.2f}s)')

        col_next.page_link('ui_video.py', label='Next Step: **🖼️ Analyze Video**', icon='➡️')

    except Exception as e:
        st.error(f'An error occurred during transcription: {e}')
        # Consider unloading model if error occurs to free memory
        if 'model' in locals():
            del model
            if device == 'cuda':
                torch.cuda.empty_cache()


if 'transcript' in st.session_state and st.session_state['transcript']:
    # --- Video Player ---
    with st.expander('**Video Player**', expanded=True):
        col_video, col_segments = st.columns(2)
        col_video.video(st.session_state.video_path, start_time=st.session_state.start_time)


    # --- Display Transcript ---
    prev_word_end = -1
    text = ''
    html_text = ''


    # for idx, segment in st.session_state.transcript.output['segments']:
    #     if trash_str in segment['text'].strip():
    #         st.session_state.transcript.output['segments'][idx]


    output = st.session_state.transcript.output
    # doc = docx.Document()
    avg_confidence_score = 0
    amount_words = 0
    save_dir = str(pathlib.Path(__file__).parent.absolute()) + '/transcripts/'

    # st.write(output['segments'])

    for idx, segment in enumerate(output['segments']):
        # segment[idx] = segment.replace(trash_str, '')
        for w in segment['words']:
            amount_words += 1
            avg_confidence_score += w['probability']

    # Define the color map
    colors = [(0.6, 0, 0), (1, 0.7, 0), (0, 0.6, 0)]
    cmap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)

    with st.expander('**TRANSCRIPT**', expanded=True):
        st.badge(
            f'whisper model: **`{whisper_model_option}`** | ' +
            f'language: **`{output["language"]}`** | ' +
            f'confidence score: **`{round(avg_confidence_score / amount_words, 3)}`**'
        )
        color_coding = st.checkbox(
            'color coding', 
            value=True, 
            # key={i}, 
            help='Цветное кодирование слов в зависимости от вероятности правильного распознавания: от зелёного (хорошо) до красного (плохо)'
        )

        # https://docs.streamlit.io/develop/api-reference/layout/st.container
        with st.container(height=300, border=False):
            for idx, segment in enumerate(output['segments']):
                for w in output['segments'][idx]['words']:
                    # check for pauses in speech longer than 3s
                    if pauses and prev_word_end != -1 and w['start'] - prev_word_end >= 3:
                        pause = w['start'] - prev_word_end
                        pause_int = int(pause)
                        html_text += f'{"." * pause_int}{{{pause_int}sec}}'
                        text += f'{"." * pause_int}{{{pause_int}sec}}'
                    prev_word_end = w['end']
                    if (color_coding):
                        rgba_color = cmap(w['probability'])
                        rgb_color = tuple(round(x * 255)
                                          for x in rgba_color[:3])
                    else:
                        rgb_color = (0, 0, 0)
                    html_text += f"<span style='color:rgb{rgb_color}'>{w['word']}</span>"
                    text += w['word']
                    # insert line break if there is a punctuation mark
                    if any(c in w['word'] for c in '!?.') and not any(c.isdigit() for c in w['word']):
                        html_text += '<br><br>'
                        text += '\n\n'
            st.markdown(html_text, unsafe_allow_html=True)
            # doc.add_paragraph(text)

        # if (translation):
        #     with st.expander("English translation"):
        #         st.markdown(output["translation"], unsafe_allow_html=True)

        # # save transcript as docx. in local folder
        # file_name = output['name'] + "-" + whisper_model + \
        #     "-" + datetime.today().strftime('%d-%m-%y') + ".docx"
        # doc.save(save_dir + file_name)

        # bio = io.BytesIO()
        # doc.save(bio)
        # st.download_button(
        #     label="Download Transcription",
        #     data=bio.getvalue(),
        #     file_name=file_name,
        #     mime="docx"
        # )


    # --- Display Segments with timestamps ---
    # if 'segments' in st.session_state.transcript:
    # with st.expander('Detailed segments (with timestamps)'):
    #     st.json(st.session_state.transcript['segments'])
    
    format_time = lambda s: str(timedelta(seconds=int(s)))

    # st.write(st.session_state.transcript.output['segments'])


    # https://discuss.streamlit.io/t/replaying-an-audio-file-with-a-timecode-click/48892/9
    # with col_segments.expander('**SEGMENTS**', expanded=True):
    # with col_segments.container('**SEGMENTS**', expanded=True):
        # https://docs.streamlit.io/develop/api-reference/layout/st.container

    st.session_state['transcript_segments'] = ''

    with col_segments.container(height=400, border=False):
        # Style buttons as links
        with stylable_container(
            key='link_buttons',
            css_styles='''
            button {
                background: none!important;
                border: none;
                padding: 0!important;
                font-family: arial, sans-serif;
                color: #069;
                cursor: pointer;
            }
            ''',
        ):
            for i, segment in enumerate(st.session_state.transcript.output['segments']):
                start = format_time(segment['start'])
                end = format_time(segment['end'])
                text = segment['text'].strip()

                # 🕒Segment {i + 1}
                # st.badge(f'**[{start} - {end}]** {text}', color='gray')
                # st.markdown(
                #     f':violet-badge[**{start} - {end}**] :gray-badge[{text}]'
                # )

                col_timecode, col_text = st.columns([1, 5], vertical_alignment='center')
                # seg_text = f':violet-badge[**{start} - {end}**] :gray-badge[{text}]'
                if col_timecode.button(f':violet-badge[**{start}{end}**]', use_container_width=True):
                    st.session_state['start_time'] = start
                    st.rerun()

                # col_text.markdown(f':gray-badge[`{text}`]')
                # col_text.write('#')
                # col_text.markdown(f'<div style="text-align: bottom;">:gray-badge[{text}]</div>', unsafe_allow_html=True)
                st.session_state.transcript_segments += f'[**{start}{end}**] {text}'
                col_text.text(f'{text}')
                # col_text.badge(text, color='gray')

            if trash_str in st.session_state.transcript_segments:
                st.session_state.transcript_segments.replace(trash_str, '')


# else:
#     st.info('Transcript has not been generated yet.')