Spaces:
Sleeping
Sleeping
File size: 18,774 Bytes
e4e56ea 6edd739 850c648 6edd739 850c648 6edd739 850c648 6edd739 e4e56ea 6edd739 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 6edd739 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 850c648 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import streamlit as st
import os
from transformers import pipeline
import time
from docx import Document
from io import BytesIO
os.environ['STREAMLIT_SERVER_ENABLE_FILE_WATCHER'] = 'false'
import torch
from langchain_ollama.llms import OllamaLLM
# from utils import cleanup_session_files, get_session_id # for cleanup button
from utils import get_secret_api, get_secret_prompt
st.session_state.secret_api = get_secret_api()
import requests
# st.session_state.secret_prompt = get_secret_prompt()
prompt_file_id = '1s5r_DuxaEoMk-D5-53FVhTMeHGVtoeV7'
default_prompt = '''Ты - ассистент, который создает конспекты лекций на основе предоставленного текста. Этот текст состоит из двух частей:
1. Транскрибация аудиодорожки видеолекции,
2. Изображение выделенных из видео ключевых кадров, с полезной информацией.
Сделай детальный конспект по тому, что описывается в видео. Для иллюстрации сравнений и сопоставлений используй markdown-таблицы. Ответ предоставь в формате markdown.
'''
# gluing_prompt = 'Вот упомянутый транскрибированный текст с таймкодами, суммаризируй его вместе с изображениями, а для иллюстрации сравнений и сопоставлений используй markdown-таблицы:'
gluing_prompt = 'Вот упомянутый транскрибированный текст с таймкодами, суммаризируй его вместе с изображениями, используя markdown-таблицы.'
if st.session_state.main_topic:
gluing_prompt += f' Основная тема лекции: {st.session_state.main_topic}'
# st.write(image_path)
frames_paths = [os.path.join(st.session_state.frames_dir, f)
for f in os.listdir(st.session_state.frames_dir)
if f.endswith('.jpg')
and os.path.isfile(os.path.join(st.session_state.frames_dir, f))]
# import base64
# # Load and encode JPEG images to base64
# frames = []
# # st.success(os.listdir(st.session_state.frames_dir))
# # st.success([os.path.isfile(f) for f in os.listdir(st.session_state.frames_dir)])# if f.endswith('.jpg') and os.path.isfile(f)])
# for image_path in frames_paths:
# # st.write(image_path)
# with open(os.path.join(st.session_state.frames_dir, image_path), 'rb') as image_file:
# # Read the image and encode it to base64
# encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
# frames.append(encoded_string)
# # st.success(frames)
st.title('📝 Step 4: Lecture Summarization')
# Check if transcript and potentially OCR text are available
transcript_available = 'transcript' in st.session_state and st.session_state['transcript']
frames_available = 'frames_dir' in st.session_state and st.session_state['frames_dir']
if not transcript_available and not frames_available:
st.warning("No text content (Transcript or OCR) found. Please complete previous steps first.")
st.stop()
# st.info("This step combines the generated transcript and OCR text (if available) and creates a summary.")
# --- Combine Sources ---
st.subheader('Sources')
# combined_text = ""
source_info = []
col_source_transcript, col_source_frames = st.columns(2)
if transcript_available:
col_source_transcript.success('✅ Transcript found')
# st.success(len(st.session_state.transcript.__dict__['output']))
# st.success(st.session_state.transcript.__dict__['output'][0]['text'])
# combined_text += '--- Transcript ---\n' + st.session_state.transcript['output'][0]['text'] + '\n\n'
# st.success(st.session_state.transcript.output[0]['text'])
transcript_text = st.session_state.transcript.output['text']
transcript_segments = st.session_state.transcript_segments
# combined_text += '--- Transcript ---\n\n' + transcript_text + '\n\n'
# st.write(combined_text)
source_info.append('Transcript')
with col_source_transcript.expander('Show transcript'):
st.text_area('Transcript', transcript_text, height=200, key='sum_transcript_disp')
else:
col_source_transcript.warning('Transcript not available.')
if frames_available:
col_source_frames.success('✅ Extracted frames found')
# combined_text += "--- OCR results ---\n" + st.session_state['frames_dir']
source_info.append('Frames dir')
# with st.expander('Extracted frames directory'):
# st.text_area('Extracted frames directory', st.session_state['frames_dir'], height=200, key="sum_ocr_disp")
# st.text_area('Extracted frames directory', st.session_state['frames_dir'], height=200, key="sum_ocr_disp")
with col_source_frames.expander('Show frames'):
st.text_input('Extracted frames directory', st.session_state['frames_dir'])
else:
# st.warning('OCR Text not available.')
col_source_frames.warning('Extracted frames not available.')
# combined_text = combined_text.strip()
# if not combined_text:
# st.error("Combined text is empty. Cannot proceed.")
if not transcript_text:
st.error('Transcript text is empty. Cannot proceed.')
st.stop()
# --- Summarization Configuration ---
st.subheader('Summarization Settings')
# Consider different models/pipelines
summarizer_options = ['gemma3:4b',
'gemma3:12b',
'granite3.2-vision',
# 'phi4',
'mistral-small3.1',
'llama3.2-vision',
# 'YandexGPT',
# 't5-base',
# 't5-large',
# 'facebook/mbart-large-50',
# 'facebook/bart-large-cnn',
# 'google/pegasus-xsum',
]
selected_model = st.selectbox('Select Summarization Model:', summarizer_options, index=1)
# # Dynamic length based on input size (example logic)
# # input_length = len(combined_text.split())
# input_length = len(transcript_text.split()) # approx word count
# default_min = max(50, input_length // 10) # suggest min length ~10% of input
# default_max = max(150, input_length // 3) # suggest max length ~30% of input
# min_length = st.slider("Minimum Summary Length (tokens):", min_value=30, max_value=max(500, default_max + 100), value=default_min)
# max_length = st.slider("Maximum Summary Length (tokens):", min_value=50, max_value=max(1000, default_max + 200), value=default_max)
# if min_length >= max_length:
# st.warning("Minimum length should be less than maximum length.")
# # Adjust max_length automatically or prevent proceeding
# max_length = min_length + 50 # simple adjustment
# --- Generate Summary ---
def describe_video(model, frames_dir, describe_prompt):
images = []
for file in os.listdir(frames_dir):
images.append(os.path.join(frames_dir, file))
model_with_images = model.bind(images=images)
return model_with_images.invoke(describe_prompt)
def load_prompt():
describe_prompt = None
prompt_url = f'https://drive.google.com/uc?export=download&id={prompt_file_id}'
response = requests.get(prompt_url)
if response.status_code == 200 and 'Google Drive - Quota exceeded' not in response.text:
describe_prompt = response.text
if not describe_prompt:
try:
with open('ideal_prompt.txt', 'r', encoding='utf-8') as file:
describe_prompt = file.read()
except:
describe_prompt = default_prompt
return describe_prompt
secret_prompt = load_prompt()
# secret_prompt =
with st.expander('**Prompt**', expanded=True):
# col_1, col_2 = st.columns(2)
describe_prompt = st.text_area(label='Промпт', height=300, value=secret_prompt)
_, col_button_summary, _ = st.columns([2, 1, 2])
if col_button_summary.button('Generate Summary', type='primary', use_container_width=True):
st.session_state['summary'] = None # clear previous summary
st.session_state['edit_mode'] = False
with st.spinner(f'Performing summarization with `{selected_model}` model..'):
# st.session_state.summary = describe_video(model=OllamaLLM(model=selected_model),
# frames=frames,
# # frames_dir=st.session_state.frames_dir,
# # describe_prompt=describe_prompt + gluing_prompt + transcript_text
# prompt=describe_prompt + gluing_prompt + transcript_text
# )
# [st.write(path, 'rb') for path in frames_paths]
response = requests.post(
f'{st.session_state.secret_api}/summarize',
# data={'frames': frames},
params={'model': selected_model,
# 'frames': frames,
'prompt': describe_prompt + gluing_prompt + transcript_segments},
# 'prompt': ''},
files=[('frames', open(path, 'rb')) for path in frames_paths]
# files=[('files', open(f, 'rb')) for f in file_names]
)
st.write(response)
response = response.json()
st.badge(f'inference_time: {response["inference_time"]} | used model: {response["model_name"]}')
# st.write(response['form'])
st.session_state['summary'] = response['summary']
# if combined_text:
# with st.spinner(f"Summarizing text using {selected_model}.. Может занять некоторое время (до x2)"):
# try:
# start_time = time.time()
# # Load the pipeline - specify device if possible
# device = 0 if torch.cuda.is_available() else -1 # device=0 for first GPU, -1 for CPU
# summarizer = pipeline("summarization", model=selected_model, device=device)
# # Handle potential long input (simplistic chunking if needed, better models handle longer inputs)
# # Basic check: Transformers often have input limits (e.g., 1024 tokens for BART).
# # A more robust solution involves chunking, summarizing chunks, and combining summaries.
# # For this example, we'll try summarizing directly, but add a warning.
# max_model_input_length = getattr(summarizer.model.config, 'max_position_embeddings', 1024) # get model's max length
# if len(summarizer.tokenizer.encode(combined_text)) > max_model_input_length:
# st.warning(f'Input text might be too long for {selected_model} (max ~{max_model_input_length} tokens).' +
# f'Consider using models designed for longer text or implementing chunking.')
# # Simple Truncation (Not Ideal):
# # truncated_text = summarizer.tokenizer.decode(summarizer.tokenizer.encode(combined_text, max_length=max_model_input_length, truncation=True))
# # summary_result = summarizer(truncated_text, max_length=max_length, min_length=min_length, do_sample=False)
# # Attempt summarization (may error if too long and not handled)
# summary_result = summarizer(combined_text, max_length=max_length, min_length=min_length, do_sample=False)
# st.session_state['summary'] = summary_result[0]['summary_text']
# end_time = time.time()
# st.success(f"Summary generated in {end_time - start_time:.2f} seconds.")
# except Exception as e:
# st.error(f"Error during summarization: {e}")
# st.error("This could be due to model loading issues, insufficient memory, or input text length.")
# if 'summarizer' in locals():
# del summarizer # try to free memory
# if device == 0: torch.cuda.empty_cache()
# else:
# st.error("No text available to summarize.")
# # --- Display and Refine Summary ---
# # st.subheader('Summary')
if 'summary' in st.session_state and st.session_state['summary']:
# with st.container(height=600, border=True):
# summary_container = st.empty()
# edited_summary = st.session_state['summary']
# # summary_container.markdown(st.session_state['summary'])
# summary_container.markdown(edited_summary, unsafe_allow_html=True)
# _, col_button_render, _ = st.columns([2, 1, 2])
# # Use st.text_area for editing
# edited_summary = st.text_area(
# 'Edit the summary here (Markdown format supported):',
# value=st.session_state['summary'],
# height=400,
# key='summary_edit_area'
# )
# if col_button_render.button('Render Markdown', type='secondary', use_container_width=True):
# with st.spinner('Generating Markdown preview..'):
# # st.markdown(edited_summary, unsafe_allow_html=True)
# summary_container.markdown(edited_summary, unsafe_allow_html=True)
# # st.session_state['summary'] = edited_summary # update summary
# # else:
# # st.markdown('', unsafe_allow_html=True)
# Инициализация состояния
if 'edit_mode' not in st.session_state:
st.session_state.edit_mode = False
with st.container(height=500, border=True):
summary_container = st.empty()
edited_summary = st.session_state.summary
# Визуализация: переключение между редактированием и превью
if st.session_state.edit_mode:
# Режим редактирования
edited_summary = summary_container.text_area(
'Редактировать Markdown:',
value=st.session_state.summary,
height=500
)
st.session_state.summary = edited_summary
else:
# Режим превью
summary_container.markdown(st.session_state.summary, unsafe_allow_html=True)
def switch_mode():
st.session_state.edit_mode = not st.session_state.edit_mode
# Кнопка переключения режима
st.button('✏️ Редактировать' if not st.session_state.edit_mode else '👁️ Просмотр',
on_click=switch_mode,
use_container_width=True)
# --- Export Options ---
st.subheader('📥 Export Notes (Download)')
col_export_md, col_export_docx, col_export_pdf = st.columns(3)
st.session_state['final_notes'] = edited_summary # store edited version
# st.session_state['final_notes'] = summary_container # store edited version
final_notes_md = st.session_state.get('final_notes', '')
# st.info(final_notes_md)
# 1. Markdown (.md) export
col_export_md.download_button(
label="📥 Markdown (.md)",
data=final_notes_md,
file_name="lecture_notes.md",
mime="text/markdown",
use_container_width=True,
)
# 2. Word (.docx) export
try:
doc = Document()
doc.add_heading('Lecture Notes Summary', 0)
# Add basic Markdown conversion (very simple - assumes paragraphs)
# For full Markdown -> Docx, a library like 'pandoc' (external) or more complex parsing is needed.
paragraphs = final_notes_md.split('\n\n') # split by double newline
for para in paragraphs:
if para.strip(): # avoid empty paragraphs
# Basic handling for potential markdown emphasis (crude)
# A proper Markdown parser would be better here
cleaned_para = para.replace('*', '').replace('_', '').replace('#', '').strip()
doc.add_paragraph(cleaned_para)
# Save docx to a BytesIO buffer
buffer = BytesIO()
doc.save(buffer)
buffer.seek(0)
col_export_docx.download_button(
label='📥 Word (.docx)',
data=buffer,
file_name='lecture_notes.docx',
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document',
use_container_width=True
)
except Exception as docx_e:
st.error(f'Failed to generate .docx file: {docx_e}')
# 3. PDF (.pdf) export
try:
col_export_pdf.download_button(
label='📥 PDF (.pdf)',
data=buffer,
file_name="lecture_notes.pdf",
use_container_width=True,
# mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
disabled=True
)
except Exception as pdf_e:
st.error(f'Failed to generate .pdf file: {pdf_e}')
# 3. PDF Export (Requires extra libraries/setup - Placeholder)
# st.markdown("---")
# st.write("**PDF Export:**")
# try:
# from mdpdf.cli import mdpdf
# pdf_buffer = BytesIO()
# # This often requires command-line execution or careful API usage
# # Simplified placeholder - actual implementation may vary:
# # mdpdf(pdf_buffer, md=final_notes_md, ...) # Fictional direct API call
# st.info("PDF generation via libraries like mdpdf/WeasyPrint requires setup.")
# except ImportError:
# st.warning("`mdpdf` library not installed. PDF export unavailable.")
# except Exception as pdf_e:
# st.error(f"Failed to generate PDF (requires setup): {pdf_e}")
else:
st.info('Summary has not been generated or is empty.')
# --- Optional: Cleanup Button ---
# st.sidebar.markdown("---")
# if st.sidebar.button("End Session & Clean Up Files"):
# session_id = get_session_id()
# cleanup_session_files(session_id)
# # Clear relevant session state keys
# keys_to_clear = ['video_path', 'audio_path', 'frames_dir', 'transcript', 'summary', 'final_notes', 'extracted_frames', 'session_id']
# for key in keys_to_clear:
# if key in st.session_state:
# del st.session_state[key]
# st.success("Temporary files cleaned and session data cleared.")
# st.info("You can now start a new session from the 'Main' page.")
# # Consider navigating back to Main page or just showing message
|