File size: 4,963 Bytes
505e401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import utils

def get_loss_function(params):
    if params['loss'] == 'an_full':
        return an_full
    elif params['loss'] == 'an_slds':
        return an_slds
    elif params['loss'] == 'an_ssdl':
        return an_ssdl
    elif params['loss'] == 'an_full_me':
        return an_full_me
    elif params['loss'] == 'an_slds_me':
        return an_slds_me
    elif params['loss'] == 'an_ssdl_me':
        return an_ssdl_me

def neg_log(x):
    return -torch.log(x + 1e-5)

def bernoulli_entropy(p):
    entropy = p * neg_log(p) + (1-p) * neg_log(1-p)
    return entropy

def an_ssdl(batch, model, params, loc_to_feats, neg_type='hard'):

    inds = torch.arange(params['batch_size'])

    loc_feat, _, class_id = batch
    loc_feat = loc_feat.to(params['device'])
    class_id = class_id.to(params['device'])
    
    assert model.inc_bias == False
    batch_size = loc_feat.shape[0]
    
    # create random background samples and extract features
    rand_loc = utils.rand_samples(batch_size, params['device'], rand_type='spherical')
    rand_feat = loc_to_feats(rand_loc, normalize=False)
    
    # get location embeddings
    loc_cat = torch.cat((loc_feat, rand_feat), 0)  # stack vertically
    loc_emb_cat = model(loc_cat, return_feats=True)
    loc_emb = loc_emb_cat[:batch_size, :]
    loc_emb_rand = loc_emb_cat[batch_size:, :]
    
    loc_pred = torch.sigmoid(model.class_emb(loc_emb))
    loc_pred_rand = torch.sigmoid(model.class_emb(loc_emb_rand))
    
    # data loss
    loss_pos = neg_log(loc_pred[inds[:batch_size], class_id])
    if neg_type == 'hard':
        loss_bg = neg_log(1.0 - loc_pred_rand[inds[:batch_size], class_id]) # assume negative
    elif neg_type == 'entropy':
        loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred_rand[inds[:batch_size], class_id]) # entropy
    else:
        raise NotImplementedError
    
    # total loss
    loss = loss_pos.mean() + loss_bg.mean()
    
    return loss

def an_slds(batch, model, params, loc_to_feats, neg_type='hard'):

    inds = torch.arange(params['batch_size'])

    loc_feat, _, class_id = batch
    loc_feat = loc_feat.to(params['device'])
    class_id = class_id.to(params['device'])
    
    assert model.inc_bias == False
    batch_size = loc_feat.shape[0]

    loc_emb = model(loc_feat, return_feats=True)
    
    loc_pred = torch.sigmoid(model.class_emb(loc_emb))
    
    num_classes = loc_pred.shape[1]
    bg_class = torch.randint(low=0, high=num_classes-1, size=(batch_size,), device=params['device'])
    bg_class[bg_class >= class_id[:batch_size]] += 1
    
    # data loss
    loss_pos = neg_log(loc_pred[inds[:batch_size], class_id])
    if neg_type == 'hard':
        loss_bg = neg_log(1.0 - loc_pred[inds[:batch_size], bg_class]) # assume negative
    elif neg_type == 'entropy':
        loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred[inds[:batch_size], bg_class]) # entropy
    else:
        raise NotImplementedError
    
    # total loss
    loss = loss_pos.mean() + loss_bg.mean()
    
    return loss

def an_full(batch, model, params, loc_to_feats, neg_type='hard'):
    
    inds = torch.arange(params['batch_size'])

    loc_feat, _, class_id = batch
    loc_feat = loc_feat.to(params['device'])
    class_id = class_id.to(params['device'])
    
    assert model.inc_bias == False
    batch_size = loc_feat.shape[0]
    
    # create random background samples and extract features
    rand_loc = utils.rand_samples(batch_size, params['device'], rand_type='spherical')
    rand_feat = loc_to_feats(rand_loc, normalize=False)
    
    # get location embeddings
    loc_cat = torch.cat((loc_feat, rand_feat), 0)  # stack vertically
    loc_emb_cat = model(loc_cat, return_feats=True)
    loc_emb = loc_emb_cat[:batch_size, :]
    loc_emb_rand = loc_emb_cat[batch_size:, :]
    # get predictions for locations and background locations
    loc_pred = torch.sigmoid(model.class_emb(loc_emb))
    loc_pred_rand = torch.sigmoid(model.class_emb(loc_emb_rand))
    
    # data loss
    if neg_type == 'hard':
        loss_pos = neg_log(1.0 - loc_pred) # assume negative
        loss_bg = neg_log(1.0 - loc_pred_rand) # assume negative
    elif neg_type == 'entropy':
        loss_pos = -1 * bernoulli_entropy(1.0 - loc_pred) # entropy
        loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred_rand) # entropy
    else:
        raise NotImplementedError
    loss_pos[inds[:batch_size], class_id] = params['pos_weight'] * neg_log(loc_pred[inds[:batch_size], class_id])
    
    # total loss
    loss = loss_pos.mean() + loss_bg.mean()
    
    return loss

def an_full_me(batch, model, params, loc_to_feats):

    return an_full(batch, model, params, loc_to_feats, neg_type='entropy')

def an_ssdl_me(batch, model, params, loc_to_feats):
    
    return an_ssdl(batch, model, params, loc_to_feats, neg_type='entropy')

def an_slds_me(batch, model, params, loc_to_feats):
    
    return an_slds(batch, model, params, loc_to_feats, neg_type='entropy')