Spaces:
Running
Running
File size: 11,095 Bytes
9ace58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import torch
import torch.nn.functional as F
import os
import numpy as np
import pandas as pd
import json
import sys
from bat_detect.detector import models
import bat_detect.detector.compute_features as feats
import bat_detect.detector.post_process as pp
import bat_detect.utils.audio_utils as au
def get_default_bd_args():
args = {}
args['detection_threshold'] = 0.001
args['time_expansion_factor'] = 1
args['audio_dir'] = ''
args['ann_dir'] = ''
args['spec_slices'] = False
args['chunk_size'] = 3
args['spec_features'] = False
args['cnn_features'] = False
args['quiet'] = True
args['save_preds_if_empty'] = True
args['ann_dir'] = os.path.join(args['ann_dir'], '')
return args
def get_audio_files(ip_dir):
matches = []
for root, dirnames, filenames in os.walk(ip_dir):
for filename in filenames:
if filename.lower().endswith('.wav'):
matches.append(os.path.join(root, filename))
return matches
def load_model(model_path, load_weights=True):
# load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if os.path.isfile(model_path):
net_params = torch.load(model_path, map_location=device)
else:
print('Error: model not found.')
sys.exit(1)
params = net_params['params']
params['device'] = device
if params['model_name'] == 'Net2DFast':
model = models.Net2DFast(params['num_filters'], num_classes=len(params['class_names']),
emb_dim=params['emb_dim'], ip_height=params['ip_height'],
resize_factor=params['resize_factor'])
elif params['model_name'] == 'Net2DFastNoAttn':
model = models.Net2DFastNoAttn(params['num_filters'], num_classes=len(params['class_names']),
emb_dim=params['emb_dim'], ip_height=params['ip_height'],
resize_factor=params['resize_factor'])
elif params['model_name'] == 'Net2DFastNoCoordConv':
model = models.Net2DFastNoCoordConv(params['num_filters'], num_classes=len(params['class_names']),
emb_dim=params['emb_dim'], ip_height=params['ip_height'],
resize_factor=params['resize_factor'])
else:
print('Error: unknown model.')
if load_weights:
model.load_state_dict(net_params['state_dict'])
model = model.to(params['device'])
model.eval()
return model, params
def merge_results(predictions, spec_feats, cnn_feats, spec_slices):
predictions_m = {}
num_preds = np.sum([len(pp['det_probs']) for pp in predictions])
if num_preds > 0:
for kk in predictions[0].keys():
predictions_m[kk] = np.hstack([pp[kk] for pp in predictions if pp['det_probs'].shape[0] > 0])
else:
# hack in case where no detected calls as we need some of the key names in dict
predictions_m = predictions[0]
if len(spec_feats) > 0:
spec_feats = np.vstack(spec_feats)
if len(cnn_feats) > 0:
cnn_feats = np.vstack(cnn_feats)
return predictions_m, spec_feats, cnn_feats, spec_slices
def convert_results(file_id, time_exp, duration, params, predictions, spec_feats, cnn_feats, spec_slices):
# create a single dictionary - this is the format used by the annotation tool
pred_dict = {}
pred_dict['id'] = file_id
pred_dict['annotated'] = False
pred_dict['issues'] = False
pred_dict['notes'] = 'Automatically generated.'
pred_dict['time_exp'] = time_exp
pred_dict['duration'] = round(duration, 4)
pred_dict['annotation'] = []
class_prob_best = predictions['class_probs'].max(0)
class_ind_best = predictions['class_probs'].argmax(0)
class_overall = pp.overall_class_pred(predictions['det_probs'], predictions['class_probs'])
pred_dict['class_name'] = params['class_names'][np.argmax(class_overall)]
for ii in range(predictions['det_probs'].shape[0]):
res = {}
res['start_time'] = round(float(predictions['start_times'][ii]), 4)
res['end_time'] = round(float(predictions['end_times'][ii]), 4)
res['low_freq'] = int(predictions['low_freqs'][ii])
res['high_freq'] = int(predictions['high_freqs'][ii])
res['class'] = str(params['class_names'][int(class_ind_best[ii])])
res['class_prob'] = round(float(class_prob_best[ii]), 3)
res['det_prob'] = round(float(predictions['det_probs'][ii]), 3)
res['individual'] = '-1'
res['event'] = 'Echolocation'
pred_dict['annotation'].append(res)
# combine into final results dictionary
results = {}
results['pred_dict'] = pred_dict
if len(spec_feats) > 0:
results['spec_feats'] = spec_feats
results['spec_feat_names'] = feats.get_feature_names()
if len(cnn_feats) > 0:
results['cnn_feats'] = cnn_feats
results['cnn_feat_names'] = [str(ii) for ii in range(cnn_feats.shape[1])]
if len(spec_slices) > 0:
results['spec_slices'] = spec_slices
return results
def save_results_to_file(results, op_path):
# make directory if it does not exist
if not os.path.isdir(os.path.dirname(op_path)):
os.makedirs(os.path.dirname(op_path))
# save csv file - if there are predictions
result_list = [res for res in results['pred_dict']['annotation']]
df = pd.DataFrame(result_list)
df['file_name'] = [results['pred_dict']['id']]*len(result_list)
df.index.name = 'id'
if 'class_prob' in df.columns:
df = df[['det_prob', 'start_time', 'end_time', 'high_freq',
'low_freq', 'class', 'class_prob']]
df.to_csv(op_path + '.csv', sep=',')
# save features
if 'spec_feats' in results.keys():
df = pd.DataFrame(results['spec_feats'], columns=results['spec_feat_names'])
df.to_csv(op_path + '_spec_features.csv', sep=',', index=False, float_format='%.5f')
if 'cnn_feats' in results.keys():
df = pd.DataFrame(results['cnn_feats'], columns=results['cnn_feat_names'])
df.to_csv(op_path + '_cnn_features.csv', sep=',', index=False, float_format='%.5f')
# save json file
with open(op_path + '.json', 'w') as da:
json.dump(results['pred_dict'], da, indent=2, sort_keys=True)
def compute_spectrogram(audio, sampling_rate, params, return_np=False):
# pad audio so it is evenly divisible by downsampling factors
duration = audio.shape[0] / float(sampling_rate)
audio = au.pad_audio(audio, sampling_rate, params['fft_win_length'],
params['fft_overlap'], params['resize_factor'],
params['spec_divide_factor'])
# generate spectrogram
spec, _ = au.generate_spectrogram(audio, sampling_rate, params)
# convert to pytorch
spec = torch.from_numpy(spec).to(params['device'])
spec = spec.unsqueeze(0).unsqueeze(0)
# resize the spec
rs = params['resize_factor']
spec_op_shape = (int(params['spec_height']*rs), int(spec.shape[-1]*rs))
spec = F.interpolate(spec, size=spec_op_shape, mode='bilinear', align_corners=False)
if return_np:
spec_np = spec[0,0,:].cpu().data.numpy()
else:
spec_np = None
return duration, spec, spec_np
def process_file(audio_file, model, params, args, time_exp=None, top_n=5, return_raw_preds=False, max_duration=False):
# store temporary results here
predictions = []
spec_feats = []
cnn_feats = []
spec_slices = []
# get time expansion factor
if time_exp is None:
time_exp = args['time_expansion_factor']
params['detection_threshold'] = args['detection_threshold']
# load audio file
sampling_rate, audio_full = au.load_audio_file(audio_file, time_exp,
params['target_samp_rate'], params['scale_raw_audio'])
# clipping maximum duration
if max_duration is not False:
max_duration = np.minimum(int(sampling_rate*max_duration), audio_full.shape[0])
audio_full = audio_full[:max_duration]
duration_full = audio_full.shape[0] / float(sampling_rate)
return_np_spec = args['spec_features'] or args['spec_slices']
# loop through larger file and split into chunks
# TODO fix so that it overlaps correctly and takes care of duplicate detections at borders
num_chunks = int(np.ceil(duration_full/args['chunk_size']))
for chunk_id in range(num_chunks):
# chunk
chunk_time = args['chunk_size']*chunk_id
chunk_length = int(sampling_rate*args['chunk_size'])
start_sample = chunk_id*chunk_length
end_sample = np.minimum((chunk_id+1)*chunk_length, audio_full.shape[0])
audio = audio_full[start_sample:end_sample]
# load audio file and compute spectrogram
duration, spec, spec_np = compute_spectrogram(audio, sampling_rate, params, return_np_spec)
# evaluate model
with torch.no_grad():
outputs = model(spec, return_feats=args['cnn_features'])
# run non-max suppression
pred_nms, features = pp.run_nms(outputs, params, np.array([float(sampling_rate)]))
pred_nms = pred_nms[0]
pred_nms['start_times'] += chunk_time
pred_nms['end_times'] += chunk_time
# if we have a background class
if pred_nms['class_probs'].shape[0] > len(params['class_names']):
pred_nms['class_probs'] = pred_nms['class_probs'][:-1, :]
predictions.append(pred_nms)
# extract features - if there are any calls detected
if (pred_nms['det_probs'].shape[0] > 0):
if args['spec_features']:
spec_feats.append(feats.get_feats(spec_np, pred_nms, params))
if args['cnn_features']:
cnn_feats.append(features[0])
if args['spec_slices']:
spec_slices.extend(feats.extract_spec_slices(spec_np, pred_nms, params))
# convert the predictions into output dictionary
file_id = os.path.basename(audio_file)
predictions, spec_feats, cnn_feats, spec_slices =\
merge_results(predictions, spec_feats, cnn_feats, spec_slices)
results = convert_results(file_id, time_exp, duration_full, params,
predictions, spec_feats, cnn_feats, spec_slices)
# summarize results
if not args['quiet']:
num_detections = len(results['pred_dict']['annotation'])
print('{}'.format(num_detections) + ' call(s) detected above the threshold.')
# print results for top n classes
if not args['quiet'] and (num_detections > 0):
class_overall = pp.overall_class_pred(predictions['det_probs'], predictions['class_probs'])
print('species name'.ljust(30) + 'probablity present')
for cc in np.argsort(class_overall)[::-1][:top_n]:
print(params['class_names'][cc].ljust(30) + str(round(class_overall[cc], 3)))
if return_raw_preds:
return predictions
else:
return results
|