File size: 17,284 Bytes
9ace58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import torch
import random
import numpy as np
import copy
import librosa
import torch.nn.functional as F
import torchaudio
import os

import sys
sys.path.append(os.path.join('..', '..'))
import bat_detect.utils.audio_utils as au


def generate_gt_heatmaps(spec_op_shape, sampling_rate, ann, params):
    # spec may be resized on input into the network
    num_classes  = len(params['class_names'])
    op_height    = spec_op_shape[0]
    op_width     = spec_op_shape[1]
    freq_per_bin = (params['max_freq'] - params['min_freq']) / op_height

    # start and end times
    x_pos_start = au.time_to_x_coords(ann['start_times'], sampling_rate,
                                      params['fft_win_length'], params['fft_overlap'])
    x_pos_start = (params['resize_factor']*x_pos_start).astype(np.int)
    x_pos_end   = au.time_to_x_coords(ann['end_times'], sampling_rate,
                                      params['fft_win_length'], params['fft_overlap'])
    x_pos_end   = (params['resize_factor']*x_pos_end).astype(np.int)

    # location on y axis i.e. frequency
    y_pos_low  = (ann['low_freqs'] - params['min_freq']) / freq_per_bin
    y_pos_low  = (op_height - y_pos_low).astype(np.int)
    y_pos_high = (ann['high_freqs'] - params['min_freq']) / freq_per_bin
    y_pos_high = (op_height - y_pos_high).astype(np.int)
    bb_widths  = x_pos_end - x_pos_start
    bb_heights = (y_pos_low - y_pos_high)

    valid_inds = np.where((x_pos_start >= 0) & (x_pos_start < op_width) &
                          (y_pos_low >= 0) & (y_pos_low < (op_height-1)))[0]

    ann_aug = {}
    ann_aug['x_inds'] = x_pos_start[valid_inds]
    ann_aug['y_inds'] = y_pos_low[valid_inds]
    keys = ['start_times', 'end_times', 'high_freqs', 'low_freqs', 'class_ids', 'individual_ids']
    for kk in keys:
        ann_aug[kk] = ann[kk][valid_inds]

    # if the number of calls is only 1, then it is unique
    # TODO would be better if we found these unique calls at the merging stage
    if len(ann_aug['individual_ids']) == 1:
        ann_aug['individual_ids'][0] = 0

    y_2d_det  = np.zeros((1, op_height, op_width), dtype=np.float32)
    y_2d_size = np.zeros((2, op_height, op_width), dtype=np.float32)
    # num classes and "background" class
    y_2d_classes = np.zeros((num_classes+1, op_height, op_width), dtype=np.float32)

    # create 2D ground truth heatmaps
    for ii in valid_inds:
        draw_gaussian(y_2d_det[0,:], (x_pos_start[ii], y_pos_low[ii]), params['target_sigma'])
        #draw_gaussian(y_2d_det[0,:], (x_pos_start[ii], y_pos_low[ii]), params['target_sigma'], params['target_sigma']*2)
        y_2d_size[0, y_pos_low[ii], x_pos_start[ii]] = bb_widths[ii]
        y_2d_size[1, y_pos_low[ii], x_pos_start[ii]] = bb_heights[ii]

        cls_id = ann['class_ids'][ii]
        if cls_id > -1:
            draw_gaussian(y_2d_classes[cls_id, :], (x_pos_start[ii], y_pos_low[ii]), params['target_sigma'])
            #draw_gaussian(y_2d_classes[cls_id, :], (x_pos_start[ii], y_pos_low[ii]), params['target_sigma'], params['target_sigma']*2)

    # be careful as this will have a 1.0 places where we have event but dont know gt class
    # this will be masked in training anyway
    y_2d_classes[num_classes, :] = 1.0 - y_2d_classes.sum(0)
    y_2d_classes = y_2d_classes / y_2d_classes.sum(0)[np.newaxis, ...]
    y_2d_classes[np.isnan(y_2d_classes)] = 0.0

    return y_2d_det, y_2d_size, y_2d_classes, ann_aug


def draw_gaussian(heatmap, center, sigmax, sigmay=None):
    # center is (x, y)
    # this edits the heatmap inplace

    if sigmay is None:
        sigmay = sigmax
    tmp_size = np.maximum(sigmax, sigmay) * 3
    mu_x = int(center[0] + 0.5)
    mu_y = int(center[1] + 0.5)
    w, h = heatmap.shape[0], heatmap.shape[1]
    ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
    br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]

    if ul[0] >= h or ul[1] >= w or br[0] < 0 or br[1] < 0:
        return False

    size = 2 * tmp_size + 1
    x = np.arange(0, size, 1, np.float32)
    y = x[:, np.newaxis]
    x0 = y0 = size // 2
    #g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
    g = np.exp(- ((x - x0) ** 2)/(2 * sigmax ** 2) - ((y - y0) ** 2)/(2 * sigmay ** 2))
    g_x = max(0, -ul[0]), min(br[0], h) - ul[0]
    g_y = max(0, -ul[1]), min(br[1], w) - ul[1]
    img_x = max(0, ul[0]), min(br[0], h)
    img_y = max(0, ul[1]), min(br[1], w)
    heatmap[img_y[0]:img_y[1], img_x[0]:img_x[1]] = np.maximum(
                                    heatmap[img_y[0]:img_y[1], img_x[0]:img_x[1]],
                                    g[g_y[0]:g_y[1], g_x[0]:g_x[1]])
    return True


def pad_aray(ip_array, pad_size):
    return np.hstack((ip_array, np.ones(pad_size, dtype=np.int)*-1))


def warp_spec_aug(spec, ann, return_spec_for_viz, params):
    # This is messy
    # Augment spectrogram by randomly stretch and squeezing
    # NOTE this also changes the start and stop time in place

    # not taking care of spec for viz
    if return_spec_for_viz:
        assert False

    delta = params['stretch_squeeze_delta']
    op_size = (spec.shape[1], spec.shape[2])
    resize_fract_r = np.random.rand()*delta*2 - delta + 1.0
    resize_amt = int(spec.shape[2]*resize_fract_r)
    if resize_amt >= spec.shape[2]:
        spec_r = torch.cat((spec, torch.zeros((1, spec.shape[1], resize_amt-spec.shape[2]), dtype=spec.dtype)), 2)
    else:
        spec_r = spec[:, :, :resize_amt]
    spec = F.interpolate(spec_r.unsqueeze(0), size=op_size, mode='bilinear', align_corners=False).squeeze(0)
    ann['start_times'] *= (1.0/resize_fract_r)
    ann['end_times']   *= (1.0/resize_fract_r)
    return spec


def mask_time_aug(spec, params):
    # Mask out a random block of time - repeat up to 3 times
    # SpecAugment: A Simple Data Augmentation Methodfor Automatic Speech Recognition
    fm = torchaudio.transforms.TimeMasking(int(spec.shape[1]*params['mask_max_time_perc']))
    for ii in range(np.random.randint(1, 4)):
        spec = fm(spec)
    return spec


def mask_freq_aug(spec, params):
    # Mask out a random frequncy range - repeat up to 3 times
    # SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
    fm = torchaudio.transforms.FrequencyMasking(int(spec.shape[1]*params['mask_max_freq_perc']))
    for ii in range(np.random.randint(1, 4)):
        spec = fm(spec)
    return spec


def scale_vol_aug(spec, params):
    return spec * np.random.random()*params['spec_amp_scaling']


def echo_aug(audio, sampling_rate, params):
    sample_offset = int(params['echo_max_delay']*np.random.random()*sampling_rate) + 1
    audio[:-sample_offset] += np.random.random()*audio[sample_offset:]
    return audio


def resample_aug(audio, sampling_rate, params):
    sampling_rate_old = sampling_rate
    sampling_rate = np.random.choice(params['aug_sampling_rates'])
    audio = librosa.resample(audio, sampling_rate_old, sampling_rate, res_type='polyphase')

    audio = au.pad_audio(audio, sampling_rate, params['fft_win_length'],
                         params['fft_overlap'], params['resize_factor'],
                         params['spec_divide_factor'], params['spec_train_width'])
    duration = audio.shape[0] / float(sampling_rate)
    return audio, sampling_rate, duration


def resample_audio(num_samples, sampling_rate, audio2, sampling_rate2):
    if sampling_rate != sampling_rate2:
        audio2 = librosa.resample(audio2, sampling_rate2, sampling_rate, res_type='polyphase')
        sampling_rate2 = sampling_rate
    if audio2.shape[0] < num_samples:
        audio2 = np.hstack((audio2, np.zeros((num_samples-audio2.shape[0]), dtype=audio2.dtype)))
    elif audio2.shape[0] > num_samples:
        audio2 = audio2[:num_samples]
    return audio2, sampling_rate2


def combine_audio_aug(audio, sampling_rate, ann, audio2, sampling_rate2, ann2):

    # resample so they are the same
    audio2, sampling_rate2 = resample_audio(audio.shape[0], sampling_rate, audio2, sampling_rate2)

    # # set mean and std to be the same
    # audio2 = (audio2 - audio2.mean())
    # audio2 = (audio2/audio2.std())*audio.std()
    # audio2 = audio2 + audio.mean()

    if ann['annotated'] and (ann2['annotated']) and \
       (sampling_rate2 == sampling_rate) and (audio.shape[0] == audio2.shape[0]):
        comb_weight = 0.3 + np.random.random()*0.4
        audio = comb_weight*audio + (1-comb_weight)*audio2
        inds = np.argsort(np.hstack((ann['start_times'], ann2['start_times'])))
        for kk in ann.keys():

            # when combining calls from different files, assume they come from different individuals
            if kk == 'individual_ids':
                if (ann[kk]>-1).sum() > 0:
                    ann2[kk][ann2[kk]>-1] += np.max(ann[kk][ann[kk]>-1]) + 1

            if (kk != 'class_id_file') and (kk != 'annotated'):
                ann[kk] = np.hstack((ann[kk], ann2[kk]))[inds]

    return audio, ann


class AudioLoader(torch.utils.data.Dataset):
    def __init__(self, data_anns_ip, params, dataset_name=None, is_train=False):

        self.data_anns = []
        self.is_train = is_train
        self.params = params
        self.return_spec_for_viz = False

        for ii in range(len(data_anns_ip)):
            dd = copy.deepcopy(data_anns_ip[ii])

            # filter out unused annotation here
            filtered_annotations = []
            for ii, aa in enumerate(dd['annotation']):

                if 'individual' in aa.keys():
                    aa['individual'] = int(aa['individual'])

                    # if only one call labeled it has to be from the same individual
                    if len(dd['annotation']) == 1:
                        aa['individual'] = 0

                # convert class name into class label
                if aa['class'] in self.params['class_names']:
                    aa['class_id'] = self.params['class_names'].index(aa['class'])
                else:
                    aa['class_id'] = -1

                if aa['class'] not in self.params['classes_to_ignore']:
                    filtered_annotations.append(aa)

            dd['annotation']     = filtered_annotations
            dd['start_times']    = np.array([aa['start_time'] for aa in dd['annotation']])
            dd['end_times']      = np.array([aa['end_time'] for aa in dd['annotation']])
            dd['high_freqs']     = np.array([float(aa['high_freq']) for aa in dd['annotation']])
            dd['low_freqs']      = np.array([float(aa['low_freq']) for aa in dd['annotation']])
            dd['class_ids']      = np.array([aa['class_id'] for aa in dd['annotation']]).astype(np.int)
            dd['individual_ids'] = np.array([aa['individual'] for aa in dd['annotation']]).astype(np.int)

            # file level class name
            dd['class_id_file'] = -1
            if 'class_name' in dd.keys():
                if dd['class_name'] in self.params['class_names']:
                    dd['class_id_file'] = self.params['class_names'].index(dd['class_name'])

            self.data_anns.append(dd)

        ann_cnt = [len(aa['annotation']) for aa in self.data_anns]
        self.max_num_anns = 2*np.max(ann_cnt) # x2 because we may be combining files during training

        print('\n')
        if dataset_name is not None:
            print('Dataset     : ' + dataset_name)
        if self.is_train:
            print('Split type  : train')
        else:
            print('Split type  : test')
        print('Num files   : ' + str(len(self.data_anns)))
        print('Num calls   : ' + str(np.sum(ann_cnt)))


    def get_file_and_anns(self, index=None):

        # if no file specified, choose random one
        if index == None:
            index = np.random.randint(0, len(self.data_anns))

        audio_file = self.data_anns[index]['file_path']
        sampling_rate, audio_raw = au.load_audio_file(audio_file, self.data_anns[index]['time_exp'],
                                      self.params['target_samp_rate'], self.params['scale_raw_audio'])

        # copy annotation
        ann = {}
        ann['annotated']     = self.data_anns[index]['annotated']
        ann['class_id_file'] = self.data_anns[index]['class_id_file']
        keys = ['start_times', 'end_times', 'high_freqs', 'low_freqs', 'class_ids', 'individual_ids']
        for kk in keys:
            ann[kk] = self.data_anns[index][kk].copy()

        # if train then grab a random crop
        if self.is_train:
            nfft = int(self.params['fft_win_length']*sampling_rate)
            noverlap = int(self.params['fft_overlap']*nfft)
            length_samples = self.params['spec_train_width']*(nfft - noverlap) + noverlap

            if audio_raw.shape[0] - length_samples > 0:
                sample_crop = np.random.randint(audio_raw.shape[0] - length_samples)
            else:
                sample_crop = 0
            audio_raw          = audio_raw[sample_crop:sample_crop+length_samples]
            ann['start_times'] = ann['start_times'] - sample_crop/float(sampling_rate)
            ann['end_times']   = ann['end_times'] - sample_crop/float(sampling_rate)

        # pad audio
        if self.is_train:
            op_spec_target_size = self.params['spec_train_width']
        else:
            op_spec_target_size = None
        audio_raw = au.pad_audio(audio_raw, sampling_rate, self.params['fft_win_length'],
                                self.params['fft_overlap'], self.params['resize_factor'],
                                self.params['spec_divide_factor'], op_spec_target_size)
        duration = audio_raw.shape[0] / float(sampling_rate)

        # sort based on time
        inds = np.argsort(ann['start_times'])
        for kk in ann.keys():
            if (kk != 'class_id_file') and (kk != 'annotated'):
                ann[kk] = ann[kk][inds]

        return audio_raw, sampling_rate, duration, ann


    def __getitem__(self, index):

        # load audio file
        audio, sampling_rate, duration, ann = self.get_file_and_anns(index)

        # augment on raw audio
        if self.is_train and self.params['augment_at_train']:
            # augment - combine with random audio file
            if self.params['augment_at_train_combine'] and np.random.random() < self.params['aug_prob']:
                audio2, sampling_rate2, duration2, ann2 = self.get_file_and_anns()
                audio, ann = combine_audio_aug(audio, sampling_rate, ann, audio2, sampling_rate2, ann2)

            # simulate echo by adding delayed copy of the file
            if np.random.random() < self.params['aug_prob']:
                audio = echo_aug(audio, sampling_rate, self.params)

            # resample the audio
            #if np.random.random() < self.params['aug_prob']:
            #   audio, sampling_rate, duration = resample_aug(audio, sampling_rate, self.params)

        # create spectrogram
        spec, spec_for_viz = au.generate_spectrogram(audio, sampling_rate, self.params, self.return_spec_for_viz)
        rsf = self.params['resize_factor']
        spec_op_shape = (int(self.params['spec_height']*rsf), int(spec.shape[1]*rsf))

        # resize the spec
        spec = torch.from_numpy(spec).unsqueeze(0).unsqueeze(0)
        spec = F.interpolate(spec, size=spec_op_shape, mode='bilinear', align_corners=False).squeeze(0)

        # augment spectrogram
        if self.is_train and self.params['augment_at_train']:

            if np.random.random() < self.params['aug_prob']:
                spec = scale_vol_aug(spec, self.params)

            if np.random.random() < self.params['aug_prob']:
                spec = warp_spec_aug(spec, ann, self.return_spec_for_viz, self.params)

            if np.random.random() < self.params['aug_prob']:
                spec = mask_time_aug(spec, self.params)

            if np.random.random() < self.params['aug_prob']:
                spec = mask_freq_aug(spec, self.params)

        outputs = {}
        outputs['spec'] = spec
        if self.return_spec_for_viz:
            outputs['spec_for_viz'] = torch.from_numpy(spec_for_viz).unsqueeze(0)

        # create ground truth heatmaps
        outputs['y_2d_det'], outputs['y_2d_size'], outputs['y_2d_classes'], ann_aug =\
                     generate_gt_heatmaps(spec_op_shape, sampling_rate, ann, self.params)

        # hack to get around requirement that all vectors are the same length in
        # the output batch
        pad_size = self.max_num_anns-len(ann_aug['individual_ids'])
        outputs['is_valid'] = pad_aray(np.ones(len(ann_aug['individual_ids'])), pad_size)
        keys = ['class_ids', 'individual_ids', 'x_inds', 'y_inds',
                'start_times', 'end_times', 'low_freqs', 'high_freqs']
        for kk in keys:
            outputs[kk] = pad_aray(ann_aug[kk], pad_size)

        # convert to pytorch
        for kk in outputs.keys():
            if type(outputs[kk]) != torch.Tensor:
                outputs[kk] = torch.from_numpy(outputs[kk])

        # scalars
        outputs['class_id_file'] = ann['class_id_file']
        outputs['annotated']     = ann['annotated']
        outputs['duration']      = duration
        outputs['sampling_rate'] = sampling_rate
        outputs['file_id']       = index

        return outputs


    def __len__(self):
        return len(self.data_anns)