Spaces:
Running
Running
File size: 23,209 Bytes
9ace58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
"""
Evaluates trained model on test set and generates plots.
"""
import numpy as np
import sys
import os
import copy
import json
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
import argparse
sys.path.append('../../')
import bat_detect.utils.detector_utils as du
import bat_detect.train.train_utils as tu
import bat_detect.detector.parameters as parameters
import bat_detect.train.evaluate as evl
import bat_detect.utils.plot_utils as pu
def get_blank_annotation(ip_str):
res = {}
res['class_name'] = ''
res['duration'] = -1
res['id'] = ''# fileName
res['issues'] = False
res['notes'] = ip_str
res['time_exp'] = 1
res['annotated'] = False
res['annotation'] = []
ann = {}
ann['class'] = ''
ann['event'] = 'Echolocation'
ann['individual'] = -1
ann['start_time'] = -1
ann['end_time'] = -1
ann['low_freq'] = -1
ann['high_freq'] = -1
ann['confidence'] = -1
return copy.deepcopy(res), copy.deepcopy(ann)
def create_genus_mapping(gt_test, preds, class_names):
# rolls the per class predictions and ground truth back up to genus level
class_names_genus, cls_to_genus = np.unique([cc.split(' ')[0] for cc in class_names], return_inverse=True)
genus_to_cls_map = [np.where(np.array(cls_to_genus) == cc)[0] for cc in range(len(class_names_genus))]
gt_test_g = []
for gg in gt_test:
gg_g = copy.deepcopy(gg)
inds = np.where(gg_g['class_ids']!=-1)[0]
gg_g['class_ids'][inds] = cls_to_genus[gg_g['class_ids'][inds]]
gt_test_g.append(gg_g)
# note, will have entries geater than one as we are summing across the respective classes
preds_g = []
for pp in preds:
pp_g = copy.deepcopy(pp)
pp_g['class_probs'] = np.zeros((len(class_names_genus), pp_g['class_probs'].shape[1]), dtype=np.float32)
for cc, inds in enumerate(genus_to_cls_map):
pp_g['class_probs'][cc, :] = pp['class_probs'][inds, :].sum(0)
preds_g.append(pp_g)
return class_names_genus, preds_g, gt_test_g
def load_tadarida_pred(ip_dir, dataset, file_of_interest):
res, ann = get_blank_annotation('Generated by Tadarida')
# create the annotations in the correct format
da_c = pd.read_csv(ip_dir + dataset + '/' + file_of_interest.replace('.wav', '.ta').replace('.WAV', '.ta'), sep='\t')
res_c = copy.deepcopy(res)
res_c['id'] = file_of_interest
res_c['dataset'] = dataset
res_c['feats'] = da_c.iloc[:, 6:].values.astype(np.float32)
if da_c.shape[0] > 0:
res_c['class_name'] = ''
res_c['class_prob'] = 0.0
for aa in range(da_c.shape[0]):
ann_c = copy.deepcopy(ann)
ann_c['class'] = 'Not Bat' # will assign to class later
ann_c['start_time'] = np.round(da_c.iloc[aa]['StTime']/1000.0 ,5)
ann_c['end_time'] = np.round((da_c.iloc[aa]['StTime'] + da_c.iloc[aa]['Dur'])/1000.0, 5)
ann_c['low_freq'] = np.round(da_c.iloc[aa]['Fmin'] * 1000.0, 2)
ann_c['high_freq'] = np.round(da_c.iloc[aa]['Fmax'] * 1000.0, 2)
ann_c['det_prob'] = 0.0
res_c['annotation'].append(ann_c)
return res_c
def load_sonobat_meta(ip_dir, datasets, region_classifier, class_names, only_accepted_species=True):
sp_dict = {}
for ss in class_names:
sp_key = ss.split(' ')[0][:3] + ss.split(' ')[1][:3]
sp_dict[sp_key] = ss
sp_dict['x'] = '' # not bat
sp_dict['Bat'] = 'Bat'
sonobat_meta = {}
for tt in datasets:
dataset = tt['dataset_name']
sb_ip_dir = ip_dir + dataset + '/' + region_classifier + '/'
# load the call level predictions
ip_file_p = sb_ip_dir + dataset + '_Parameters_v4.5.0.txt'
#ip_file_p = sb_ip_dir + 'audio_SonoBatch_v30.0 beta.txt'
da = pd.read_csv(ip_file_p, sep='\t')
# load the file level predictions
ip_file_b = sb_ip_dir + dataset + '_SonoBatch_v4.5.0.txt'
#ip_file_b = sb_ip_dir + 'audio_CumulativeParameters_v30.0 beta.txt'
with open(ip_file_b) as f:
lines = f.readlines()
lines = [x.strip() for x in lines]
del lines[0]
file_res = {}
for ll in lines:
# note this does not seem to parse the file very well
ll_data = ll.split('\t')
# there are sometimes many different species names per file
if only_accepted_species:
# only choosing "SppAccp"
ind = 4
else:
# choosing ""~Spp" if "SppAccp" does not exist
if ll_data[4] != 'x':
ind = 4 # choosing "SppAccp", along with "Prob" here
else:
ind = 8 # choosing "~Spp", along with "~Prob" here
sp_name_1 = sp_dict[ll_data[ind]]
prob_1 = ll_data[ind+1]
if prob_1 == 'x':
prob_1 = 0.0
file_res[ll_data[1]] = {'id':ll_data[1], 'species_1':sp_name_1, 'prob_1':prob_1}
sonobat_meta[dataset] = {}
sonobat_meta[dataset]['file_res'] = file_res
sonobat_meta[dataset]['call_info'] = da
return sonobat_meta
def load_sonobat_preds(dataset, id, sb_meta, set_class_name=None):
# create the annotations in the correct format
res, ann = get_blank_annotation('Generated by Sonobat')
res_c = copy.deepcopy(res)
res_c['id'] = id
res_c['dataset'] = dataset
da = sb_meta[dataset]['call_info']
da_c = da[da['Filename'] == id]
file_res = sb_meta[dataset]['file_res']
res_c['feats'] = np.zeros((0,0))
if da_c.shape[0] > 0:
res_c['class_name'] = file_res[id]['species_1']
res_c['class_prob'] = file_res[id]['prob_1']
res_c['feats'] = da_c.iloc[:, 3:105].values.astype(np.float32)
for aa in range(da_c.shape[0]):
ann_c = copy.deepcopy(ann)
if set_class_name is None:
ann_c['class'] = file_res[id]['species_1']
else:
ann_c['class'] = set_class_name
ann_c['start_time'] = np.round(da_c.iloc[aa]['TimeInFile'] / 1000.0 ,5)
ann_c['end_time'] = np.round(ann_c['start_time'] + da_c.iloc[aa]['CallDuration']/1000.0, 5)
ann_c['low_freq'] = np.round(da_c.iloc[aa]['LowFreq'] * 1000.0, 2)
ann_c['high_freq'] = np.round(da_c.iloc[aa]['HiFreq'] * 1000.0, 2)
ann_c['det_prob'] = np.round(da_c.iloc[aa]['Quality'], 3)
res_c['annotation'].append(ann_c)
return res_c
def bb_overlap(bb_g_in, bb_p_in):
freq_scale = 10000000.0 # ensure that both axis are roughly the same range
bb_g = [bb_g_in['start_time'], bb_g_in['low_freq']/freq_scale, bb_g_in['end_time'], bb_g_in['high_freq']/freq_scale]
bb_p = [bb_p_in['start_time'], bb_p_in['low_freq']/freq_scale, bb_p_in['end_time'], bb_p_in['high_freq']/freq_scale]
xA = max(bb_g[0], bb_p[0])
yA = max(bb_g[1], bb_p[1])
xB = min(bb_g[2], bb_p[2])
yB = min(bb_g[3], bb_p[3])
# compute the area of intersection rectangle
inter_area = abs(max((xB - xA, 0.0)) * max((yB - yA), 0.0))
if inter_area == 0:
iou = 0.0
else:
# compute the area of both
bb_area_g = abs((bb_g[2] - bb_g[0]) * (bb_g[3] - bb_g[1]))
bb_area_p = abs((bb_p[2] - bb_p[0]) * (bb_p[3] - bb_p[1]))
iou = inter_area / float(bb_area_g + bb_area_p - inter_area)
return iou
def assign_to_gt(gt, pred, iou_thresh):
# this will edit pred in place
num_preds = len(pred['annotation'])
num_gts = len(gt['annotation'])
if num_preds > 0 and num_gts > 0:
iou_m = np.zeros((num_preds, num_gts))
for ii in range(num_preds):
for jj in range(num_gts):
iou_m[ii, jj] = bb_overlap(gt['annotation'][jj], pred['annotation'][ii])
# greedily assign detections to ground truths
# needs to be greater than some threshold and we cannot assign GT
# to more than one detection
# TODO could try to do an optimal assignment
for jj in range(num_gts):
max_iou = np.argmax(iou_m[:, jj])
if iou_m[max_iou, jj] > iou_thresh:
pred['annotation'][max_iou]['class'] = gt['annotation'][jj]['class']
iou_m[max_iou, :] = -1.0
return pred
def parse_data(data, class_names, non_event_classes, is_pred=False):
class_names_all = class_names + non_event_classes
data['class_names'] = np.array([aa['class'] for aa in data['annotation']])
data['start_times'] = np.array([aa['start_time'] for aa in data['annotation']])
data['end_times'] = np.array([aa['end_time'] for aa in data['annotation']])
data['high_freqs'] = np.array([float(aa['high_freq']) for aa in data['annotation']])
data['low_freqs'] = np.array([float(aa['low_freq']) for aa in data['annotation']])
if is_pred:
# when loading predictions
data['det_probs'] = np.array([float(aa['det_prob']) for aa in data['annotation']])
data['class_probs'] = np.zeros((len(class_names)+1, len(data['annotation'])))
data['class_ids'] = np.array([class_names_all.index(aa['class']) for aa in data['annotation']]).astype(np.int32)
else:
# when loading ground truth
# if the class label is not in the set of interest then set to -1
labels = []
for aa in data['annotation']:
if aa['class'] in class_names:
labels.append(class_names_all.index(aa['class']))
else:
labels.append(-1)
data['class_ids'] = np.array(labels).astype(np.int32)
return data
def load_gt_data(datasets, events_of_interest, class_names, classes_to_ignore):
gt_data = []
for dd in datasets:
print('\n' + dd['dataset_name'])
gt_dataset = tu.load_set_of_anns([dd], events_of_interest=events_of_interest, verbose=True)
gt_dataset = [parse_data(gg, class_names, classes_to_ignore, False) for gg in gt_dataset]
for gt in gt_dataset:
gt['dataset_name'] = dd['dataset_name']
gt_data.extend(gt_dataset)
return gt_data
def train_rf_model(x_train, y_train, num_classes, seed=2001):
# TODO search for the best hyper parameters on val set
# Currently only training on the species and 'not bat' - exclude 'generic_class' which is last
# alternative would be to first have a "bat" vs "not bat" classifier, and then a species classifier?
x_train = np.vstack(x_train)
y_train = np.hstack(y_train)
inds = np.where(y_train < num_classes)[0]
x_train = x_train[inds, :]
y_train = y_train[inds]
un_train_class = np.unique(y_train)
clf = RandomForestClassifier(random_state=seed, n_jobs=-1)
clf.fit(x_train, y_train)
y_pred = clf.predict(x_train)
tr_acc = (y_pred==y_train).mean()
#print('Train acc', round(tr_acc*100, 2))
return clf, un_train_class
def eval_rf_model(clf, pred, un_train_class, num_classes):
# stores the prediction in place
if pred['feats'].shape[0] > 0:
pred['class_probs'] = np.zeros((num_classes, pred['feats'].shape[0]))
pred['class_probs'][un_train_class, :] = clf.predict_proba(pred['feats']).T
pred['det_probs'] = pred['class_probs'][:-1, :].sum(0)
else:
pred['class_probs'] = np.zeros((num_classes, 0))
pred['det_probs'] = np.zeros(0)
return pred
def save_summary_to_json(op_dir, mod_name, results):
op = {}
op['avg_prec'] = round(results['avg_prec'], 3)
op['avg_prec_class'] = round(results['avg_prec_class'], 3)
op['top_class'] = round(results['top_class']['avg_prec'], 3)
op['file_acc'] = round(results['file_acc'], 3)
op['model'] = mod_name
op['per_class'] = {}
for cc in results['class_pr']:
op['per_class'][cc['name']] = cc['avg_prec']
op_file_name = os.path.join(op_dir, mod_name + '_results.json')
with open(op_file_name, 'w') as da:
json.dump(op, da, indent=2)
def print_results(model_name, mod_str, results, op_dir, class_names, file_type, title_text=''):
print('\nResults - ' + model_name)
print('avg_prec ', round(results['avg_prec'], 3))
print('avg_prec_class', round(results['avg_prec_class'], 3))
print('top_class ', round(results['top_class']['avg_prec'], 3))
print('file_acc ', round(results['file_acc'], 3))
print('\nSaving ' + model_name + ' results to: ' + op_dir)
save_summary_to_json(op_dir, mod_str, results)
pu.plot_pr_curve(op_dir, mod_str+'_test_all_det', mod_str+'_test_all_det', results, file_type, title_text + 'Detection PR')
pu.plot_pr_curve(op_dir, mod_str+'_test_all_top_class', mod_str+'_test_all_top_class', results['top_class'], file_type, title_text + 'Top Class')
pu.plot_pr_curve_class(op_dir, mod_str+'_test_all_class', mod_str+'_test_all_class', results, file_type, title_text + 'Per-Class PR')
pu.plot_confusion_matrix(op_dir, mod_str+'_confusion', results['gt_valid_file'], results['pred_valid_file'],
results['file_acc'], class_names, True, file_type, title_text + 'Confusion Matrix')
def add_root_path_back(data_sets, ann_path, wav_path):
for dd in data_sets:
dd['ann_path'] = os.path.join(ann_path, dd['ann_path'])
dd['wav_path'] = os.path.join(wav_path, dd['wav_path'])
return data_sets
def check_classes_in_train(gt_list, class_names):
num_gt_total = np.sum([gg['start_times'].shape[0] for gg in gt_list])
num_with_no_class = 0
for gt in gt_list:
for cc in gt['class_names']:
if cc not in class_names:
num_with_no_class += 1
return num_with_no_class
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('op_dir', type=str, default='plots/results_compare/',
help='Output directory for plots')
parser.add_argument('data_dir', type=str,
help='Path to root of datasets')
parser.add_argument('ann_dir', type=str,
help='Path to extracted annotations')
parser.add_argument('bd_model_path', type=str,
help='Path to BatDetect model')
parser.add_argument('--test_file', type=str, default='',
help='Path to json file used for evaluation.')
parser.add_argument('--sb_ip_dir', type=str, default='',
help='Path to sonobat predictions')
parser.add_argument('--sb_region_classifier', type=str, default='south',
help='Path to sonobat predictions')
parser.add_argument('--td_ip_dir', type=str, default='',
help='Path to tadarida_D predictions')
parser.add_argument('--iou_thresh', type=float, default=0.01,
help='IOU threshold for assigning predictions to ground truth')
parser.add_argument('--file_type', type=str, default='png',
help='Type of image to save - png or pdf')
parser.add_argument('--title_text', type=str, default='',
help='Text to add as title of plots')
parser.add_argument('--rand_seed', type=int, default=2001,
help='Random seed')
args = vars(parser.parse_args())
np.random.seed(args['rand_seed'])
if not os.path.isdir(args['op_dir']):
os.makedirs(args['op_dir'])
# load the model
params_eval = parameters.get_params(False)
_, params_bd = du.load_model(args['bd_model_path'])
class_names = params_bd['class_names']
num_classes = len(class_names) + 1 # num classes plus background class
classes_to_ignore = ['Not Bat', 'Bat', 'Unknown']
events_of_interest = ['Echolocation']
# load test data
if args['test_file'] == '':
# load the test files of interest from the trained model
test_sets = add_root_path_back(params_bd['test_sets'], args['ann_dir'], args['data_dir'])
test_sets = [dd for dd in test_sets if not dd['is_binary']] # exclude bat/not datasets
else:
# user specified annotation file to evaluate
test_dict = {}
test_dict['dataset_name'] = args['test_file'].replace('.json', '')
test_dict['is_test'] = True
test_dict['is_binary'] = True
test_dict['ann_path'] = os.path.join(args['ann_dir'], args['test_file'])
test_dict['wav_path'] = args['data_dir']
test_sets = [test_dict]
# load the gt for the test set
gt_test = load_gt_data(test_sets, events_of_interest, class_names, classes_to_ignore)
total_num_calls = np.sum([gg['start_times'].shape[0] for gg in gt_test])
print('\nTotal number of test files:', len(gt_test))
print('Total number of test calls:', np.sum([gg['start_times'].shape[0] for gg in gt_test]))
# check if test contains classes not in the train set
num_with_no_class = check_classes_in_train(gt_test, class_names)
if total_num_calls == num_with_no_class:
print('Classes from the test set are not in the train set.')
assert False
# only need the train data if evaluating Sonobat or Tadarida
if args['sb_ip_dir'] != '' or args['td_ip_dir'] != '':
train_sets = add_root_path_back(params_bd['train_sets'], args['ann_dir'], args['data_dir'])
train_sets = [dd for dd in train_sets if not dd['is_binary']] # exclude bat/not datasets
gt_train = load_gt_data(train_sets, events_of_interest, class_names, classes_to_ignore)
#
# evaluate Sonobat by training random forest classifier
#
# NOTE: Sonobat may only make predictions for a subset of the files
#
if args['sb_ip_dir'] != '':
sb_meta = load_sonobat_meta(args['sb_ip_dir'], train_sets + test_sets, args['sb_region_classifier'], class_names)
preds_sb = []
keep_inds_sb = []
for ii, gt in enumerate(gt_test):
sb_pred = load_sonobat_preds(gt['dataset_name'], gt['id'], sb_meta)
if sb_pred['class_name'] != '':
sb_pred = parse_data(sb_pred, class_names, classes_to_ignore, True)
sb_pred['class_probs'][sb_pred['class_ids'], np.arange(sb_pred['class_probs'].shape[1])] = sb_pred['det_probs']
preds_sb.append(sb_pred)
keep_inds_sb.append(ii)
results_sb = evl.evaluate_predictions([gt_test[ii] for ii in keep_inds_sb], preds_sb, class_names,
params_eval['detection_overlap'], params_eval['ignore_start_end'])
print_results('Sonobat', 'sb', results_sb, args['op_dir'], class_names,
args['file_type'], args['title_text'] + ' - Species - ')
print('Only reporting results for', len(keep_inds_sb), 'files, out of', len(gt_test))
# train our own random forest on sonobat features
x_train = []
y_train = []
for gt in gt_train:
pred = load_sonobat_preds(gt['dataset_name'], gt['id'], sb_meta, 'Not Bat')
if len(pred['annotation']) > 0:
# compute detection overlap with ground truth to determine which are the TP detections
assign_to_gt(gt, pred, args['iou_thresh'])
pred = parse_data(pred, class_names, classes_to_ignore, True)
x_train.append(pred['feats'])
y_train.append(pred['class_ids'])
# train random forest on tadarida predictions
clf_sb, un_train_class = train_rf_model(x_train, y_train, num_classes, args['rand_seed'])
# run the model on the test set
preds_sb_rf = []
for gt in gt_test:
pred = load_sonobat_preds(gt['dataset_name'], gt['id'], sb_meta, 'Not Bat')
pred = parse_data(pred, class_names, classes_to_ignore, True)
pred = eval_rf_model(clf_sb, pred, un_train_class, num_classes)
preds_sb_rf.append(pred)
results_sb_rf = evl.evaluate_predictions(gt_test, preds_sb_rf, class_names,
params_eval['detection_overlap'], params_eval['ignore_start_end'])
print_results('Sonobat RF', 'sb_rf', results_sb_rf, args['op_dir'], class_names,
args['file_type'], args['title_text'] + ' - Species - ')
print('\n\nWARNING\nThis is evaluating on the full test set, but there is only dections for a subset of files\n\n')
#
# evaluate Tadarida-D by training random forest classifier
#
if args['td_ip_dir'] != '':
x_train = []
y_train = []
for gt in gt_train:
pred = load_tadarida_pred(args['td_ip_dir'], gt['dataset_name'], gt['id'])
# compute detection overlap with ground truth to determine which are the TP detections
assign_to_gt(gt, pred, args['iou_thresh'])
pred = parse_data(pred, class_names, classes_to_ignore, True)
x_train.append(pred['feats'])
y_train.append(pred['class_ids'])
# train random forest on Tadarida-D predictions
clf_td, un_train_class = train_rf_model(x_train, y_train, num_classes, args['rand_seed'])
# run the model on the test set
preds_td = []
for gt in gt_test:
pred = load_tadarida_pred(args['td_ip_dir'], gt['dataset_name'], gt['id'])
pred = parse_data(pred, class_names, classes_to_ignore, True)
pred = eval_rf_model(clf_td, pred, un_train_class, num_classes)
preds_td.append(pred)
results_td = evl.evaluate_predictions(gt_test, preds_td, class_names,
params_eval['detection_overlap'], params_eval['ignore_start_end'])
print_results('Tadarida', 'td_rf', results_td, args['op_dir'], class_names,
args['file_type'], args['title_text'] + ' - Species - ')
#
# evaluate BatDetect
#
if args['bd_model_path'] != '':
# load model
bd_args = du.get_default_bd_args()
model, params_bd = du.load_model(args['bd_model_path'])
# check if the class names are the same
if params_bd['class_names'] != class_names:
print('Warning: Class names are not the same as the trained model')
assert False
preds_bd = []
for ii, gg in enumerate(gt_test):
pred = du.process_file(gg['file_path'], model, params_bd, bd_args, return_raw_preds=True)
preds_bd.append(pred)
results_bd = evl.evaluate_predictions(gt_test, preds_bd, class_names,
params_eval['detection_overlap'], params_eval['ignore_start_end'])
print_results('BatDetect', 'bd', results_bd, args['op_dir'],
class_names, args['file_type'], args['title_text'] + ' - Species - ')
# evaluate genus level
class_names_genus, preds_bd_g, gt_test_g = create_genus_mapping(gt_test, preds_bd, class_names)
results_bd_genus = evl.evaluate_predictions(gt_test_g, preds_bd_g, class_names_genus,
params_eval['detection_overlap'], params_eval['ignore_start_end'])
print_results('BatDetect Genus', 'bd_genus', results_bd_genus, args['op_dir'],
class_names_genus, args['file_type'], args['title_text'] + ' - Genus - ')
|