File size: 24,521 Bytes
6cc22a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
"""
Enhanced visualization components for HVAC Load Calculator.
This module provides improved visualization for cooling load results.
"""

import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import calendar
from models.building import Building, CoolingLoadResult

def display_enhanced_results(result: CoolingLoadResult, building: Building = None, monthly_breakdown: dict = None):
    """
    Display enhanced cooling load calculation results with improved visualizations.
    
    Args:
        result: Cooling load calculation results
        building: Optional building model for additional context
        monthly_breakdown: Optional monthly breakdown data
    """
    st.header("Cooling Load Calculation Results")
    
    # Building information
    if building:
        st.subheader(f"Building: {building.settings.name}")
        col1, col2, col3 = st.columns(3)
        with col1:
            st.write(f"**Location:** {building.location.city}")
            st.write(f"**Latitude:** {building.location.latitude}")
        with col2:
            st.write(f"**Floor Area:** {building.settings.floor_area} m²")
            st.write(f"**Ceiling Height:** {building.settings.ceiling_height} m")
        with col3:
            st.write(f"**Indoor Temperature:** {building.settings.indoor_temp} °C")
            st.write(f"**Indoor Humidity:** {building.settings.indoor_humidity}%")
    else:
        st.subheader(f"Building: {result.building_name}")
    
    # Peak cooling load with improved metrics
    st.subheader("Peak Cooling Load")
    
    # Calculate per area metrics
    area = building.settings.floor_area if building else 100  # Default to 100 m² if no building provided
    sensible_per_area = result.peak_sensible_load / area
    latent_per_area = result.peak_latent_load / area
    total_per_area = result.peak_total_load / area
    
    # Create metrics with comparisons to benchmarks
    # These benchmarks are examples and should be adjusted based on building type and climate
    benchmark_total = 100  # W/m²
    benchmark_sensible = 75  # W/m²
    benchmark_latent = 25  # W/m²
    
    col1, col2, col3, col4 = st.columns(4)
    
    with col1:
        st.metric(
            "Sensible Load", 
            f"{result.peak_sensible_load:.1f} W", 
            f"{sensible_per_area:.1f} W/m²",
            delta_color="off"
        )
    
    with col2:
        st.metric(
            "Latent Load", 
            f"{result.peak_latent_load:.1f} W", 
            f"{latent_per_area:.1f} W/m²",
            delta_color="off"
        )
    
    with col3:
        delta_percentage = ((total_per_area - benchmark_total) / benchmark_total) * 100
        st.metric(
            "Total Load", 
            f"{result.peak_total_load:.1f} W", 
            f"{delta_percentage:.1f}% vs benchmark",
            delta_color="inverse"
        )
    
    with col4:
        st.metric(
            "Peak Hour", 
            f"{result.peak_hour}:00",
            f"SHR: {result.peak_sensible_load / result.peak_total_load:.2f}",
            delta_color="off"
        )
    
    # Interactive load breakdown with Plotly
    st.subheader("Load Breakdown")
    
    # Prepare data for pie charts
    external_loads = result.external_loads
    internal_loads = result.internal_loads
    
    # External loads breakdown
    external_breakdown = {
        "Roof": external_loads.get("roof", 0),
        "Walls": external_loads.get("walls_total", 0),
        "Glass Conduction": external_loads.get("glass_conduction_total", 0),
        "Glass Solar": external_loads.get("glass_solar_total", 0)
    }
    
    # Internal loads breakdown
    internal_breakdown = {
        "People (Sensible)": internal_loads.get("people_sensible", 0),
        "People (Latent)": internal_loads.get("people_latent", 0),
        "Lighting": internal_loads.get("lighting", 0),
        "Equipment (Sensible)": internal_loads.get("equipment_sensible", 0),
        "Equipment (Latent)": internal_loads.get("equipment_latent", 0)
    }
    
    # Combined breakdown for stacked bar chart
    combined_breakdown = {
        "External": sum(external_breakdown.values()),
        "Internal (Sensible)": internal_loads.get("sensible_total", 0) - internal_loads.get("people_latent", 0) - internal_loads.get("equipment_latent", 0),
        "Internal (Latent)": internal_loads.get("latent_total", 0)
    }
    
    # Create tabs for different visualization options
    viz_tabs = st.tabs(["Pie Charts", "Stacked Bar", "Treemap", "Detailed Breakdown"])
    
    with viz_tabs[0]:
        col1, col2 = st.columns(2)
        
        with col1:
            # Create interactive pie chart with Plotly
            fig = px.pie(
                values=list(external_breakdown.values()),
                names=list(external_breakdown.keys()),
                title="External Loads",
                color_discrete_sequence=px.colors.qualitative.Pastel,
                hole=0.4
            )
            fig.update_traces(textposition='inside', textinfo='percent+label')
            st.plotly_chart(fig, use_container_width=True)
        
        with col2:
            # Create interactive pie chart with Plotly
            fig = px.pie(
                values=list(internal_breakdown.values()),
                names=list(internal_breakdown.keys()),
                title="Internal Loads",
                color_discrete_sequence=px.colors.qualitative.Pastel2,
                hole=0.4
            )
            fig.update_traces(textposition='inside', textinfo='percent+label')
            st.plotly_chart(fig, use_container_width=True)
    
    with viz_tabs[1]:
        # Create stacked bar chart with Plotly
        fig = go.Figure()
        
        # Add bars
        fig.add_trace(go.Bar(
            y=["Cooling Load"],
            x=[combined_breakdown["External"]],
            name="External",
            orientation='h',
            marker=dict(color='rgba(58, 71, 80, 0.6)')
        ))
        fig.add_trace(go.Bar(
            y=["Cooling Load"],
            x=[combined_breakdown["Internal (Sensible)"]],
            name="Internal (Sensible)",
            orientation='h',
            marker=dict(color='rgba(246, 78, 139, 0.6)')
        ))
        fig.add_trace(go.Bar(
            y=["Cooling Load"],
            x=[combined_breakdown["Internal (Latent)"]],
            name="Internal (Latent)",
            orientation='h',
            marker=dict(color='rgba(6, 147, 227, 0.6)')
        ))
        
        # Customize layout
        fig.update_layout(
            title="Cooling Load Composition",
            barmode='stack',
            height=300,
            xaxis=dict(title="Load (W)"),
            legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
        )
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Add percentage breakdown
        total = sum(combined_breakdown.values())
        st.write(f"**External Load:** {combined_breakdown['External']:.1f} W ({combined_breakdown['External']/total*100:.1f}%)")
        st.write(f"**Internal Sensible Load:** {combined_breakdown['Internal (Sensible)']:.1f} W ({combined_breakdown['Internal (Sensible)']/total*100:.1f}%)")
        st.write(f"**Internal Latent Load:** {combined_breakdown['Internal (Latent)']:.1f} W ({combined_breakdown['Internal (Latent)']/total*100:.1f}%)")
    
    with viz_tabs[2]:
        # Create treemap with Plotly
        # Prepare data for treemap
        treemap_data = []
        
        # Add external loads
        for key, value in external_breakdown.items():
            treemap_data.append({"category": "External", "component": key, "value": value})
        
        # Add internal loads
        for key, value in internal_breakdown.items():
            treemap_data.append({"category": "Internal", "component": key, "value": value})
        
        # Create dataframe
        treemap_df = pd.DataFrame(treemap_data)
        
        # Create treemap
        fig = px.treemap(
            treemap_df,
            path=['category', 'component'],
            values='value',
            title="Cooling Load Components",
            color_discrete_sequence=px.colors.qualitative.Pastel
        )
        
        # Update layout
        fig.update_traces(textinfo="label+value+percent parent")
        
        st.plotly_chart(fig, use_container_width=True)
    
    with viz_tabs[3]:
        # Create detailed tables
        st.write("### External Loads Breakdown")
        external_df = pd.DataFrame({
            "Component": external_breakdown.keys(),
            "Load (W)": external_breakdown.values(),
            "Percentage (%)": [val / sum(external_breakdown.values()) * 100 for val in external_breakdown.values()]
        })
        st.dataframe(external_df, use_container_width=True)
        
        st.write("### Internal Loads Breakdown")
        internal_df = pd.DataFrame({
            "Component": internal_breakdown.keys(),
            "Load (W)": internal_breakdown.values(),
            "Percentage (%)": [val / sum(internal_breakdown.values()) * 100 for val in internal_breakdown.values()]
        })
        st.dataframe(internal_df, use_container_width=True)
        
        # Wall breakdown if available
        if "walls" in external_loads:
            st.write("### Wall Loads by Orientation")
            wall_loads = external_loads["walls"]
            wall_df = pd.DataFrame({
                "Wall": wall_loads.keys(),
                "Load (W)": wall_loads.values()
            })
            st.dataframe(wall_df, use_container_width=True)
        
        # Glass breakdown if available
        if "glass_conduction" in external_loads and "glass_solar" in external_loads:
            st.write("### Glass Loads by Orientation")
            glass_cond = external_loads["glass_conduction"]
            glass_solar = external_loads["glass_solar"]
            
            # Combine conduction and solar loads
            glass_combined = {}
            for key in glass_cond:
                orientation = key.split("_")[2]
                if orientation not in glass_combined:
                    glass_combined[orientation] = {"conduction": 0, "solar": 0}
                glass_combined[orientation]["conduction"] += glass_cond[key]
            
            for key in glass_solar:
                orientation = key.split("_")[2]
                if orientation not in glass_combined:
                    glass_combined[orientation] = {"conduction": 0, "solar": 0}
                glass_combined[orientation]["solar"] += glass_solar[key]
            
            # Create dataframe
            glass_df = pd.DataFrame([
                {"Orientation": orientation, "Conduction (W)": data["conduction"], "Solar (W)": data["solar"], "Total (W)": data["conduction"] + data["solar"]}
                for orientation, data in glass_combined.items()
            ])
            st.dataframe(glass_df, use_container_width=True)
    
    # Monthly breakdown with interactive charts
    st.subheader("Monthly Cooling Load Breakdown")
    
    if result.monthly_loads:
        # Prepare data for monthly breakdown
        months = list(result.monthly_loads.keys())
        peak_loads = [result.monthly_loads[month]["peak_load"] for month in months]
        daily_averages = [result.monthly_loads[month]["daily_average"] for month in months]
        
        # Create tabs for different visualization options
        monthly_tabs = st.tabs(["Bar Chart", "Line Chart", "Heatmap", "Monthly Data"])
        
        with monthly_tabs[0]:
            # Create interactive bar chart with Plotly
            fig = go.Figure()
            
            fig.add_trace(go.Bar(
                x=months,
                y=peak_loads,
                name="Peak Load (W)",
                marker_color='rgb(55, 83, 109)'
            ))
            
            fig.add_trace(go.Bar(
                x=months,
                y=daily_averages,
                name="Daily Average (W)",
                marker_color='rgb(26, 118, 255)'
            ))
            
            fig.update_layout(
                title="Monthly Cooling Load Comparison",
                xaxis=dict(title="Month"),
                yaxis=dict(title="Cooling Load (W)"),
                barmode='group',
                legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
            )
            
            st.plotly_chart(fig, use_container_width=True)
        
        with monthly_tabs[1]:
            # Create interactive line chart with Plotly
            fig = go.Figure()
            
            fig.add_trace(go.Scatter(
                x=months,
                y=peak_loads,
                name="Peak Load (W)",
                mode='lines+markers',
                line=dict(color='rgb(55, 83, 109)', width=2),
                marker=dict(size=8)
            ))
            
            fig.add_trace(go.Scatter(
                x=months,
                y=daily_averages,
                name="Daily Average (W)",
                mode='lines+markers',
                line=dict(color='rgb(26, 118, 255)', width=2),
                marker=dict(size=8)
            ))
            
            # Add monthly outdoor temperatures if available
            if monthly_breakdown:
                monthly_temps = [monthly_breakdown[month]["avg_temp_c"] for month in months]
                
                # Create secondary y-axis for temperature
                fig.add_trace(go.Scatter(
                    x=months,
                    y=monthly_temps,
                    name="Avg. Temperature (°C)",
                    mode='lines+markers',
                    line=dict(color='rgb(255, 99, 71)', width=2, dash='dot'),
                    marker=dict(size=8),
                    yaxis="y2"
                ))
                
                # Update layout with secondary y-axis
                fig.update_layout(
                    yaxis2=dict(
                        title="Temperature (°C)",
                        overlaying="y",
                        side="right",
                        range=[0, max(monthly_temps) * 1.2]
                    )
                )
            
            fig.update_layout(
                title="Monthly Cooling Load Trends",
                xaxis=dict(title="Month"),
                yaxis=dict(title="Cooling Load (W)"),
                legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
            )
            
            st.plotly_chart(fig, use_container_width=True)
        
        with monthly_tabs[2]:
            # Create heatmap of hourly loads for each month
            if all("hourly_loads" in result.monthly_loads[month] for month in months):
                # Prepare data for heatmap
                hourly_data = np.zeros((12, 24))
                
                for i, month in enumerate(months):
                    hourly_data[i] = result.monthly_loads[month]["hourly_loads"]
                
                # Create heatmap with Plotly
                fig = px.imshow(
                    hourly_data,
                    labels=dict(x="Hour of Day", y="Month", color="Cooling Load (W)"),
                    x=list(range(1, 25)),
                    y=months,
                    color_continuous_scale="Viridis",
                    title="Hourly Cooling Load by Month"
                )
                
                fig.update_layout(
                    xaxis=dict(tickmode='linear', tick0=1, dtick=1),
                    coloraxis_colorbar=dict(title="Load (W)")
                )
                
                st.plotly_chart(fig, use_container_width=True)
                
                # Add explanation
                st.info("This heatmap shows the cooling load for each hour of the day across different months. Darker colors indicate higher cooling loads.")
            else:
                st.info("Hourly load data not available for heatmap visualization.")
        
        with monthly_tabs[3]:
            # Display monthly data in a table
            if monthly_breakdown:
                # Create dataframe
                monthly_df = pd.DataFrame([
                    {
                        "Month": month,
                        "Avg. Temp (°C)": data["avg_temp_c"],
                        "Peak Load (kW)": data["peak_load_w"] / 1000,
                        "Avg. Load (kW)": data["average_load_w"] / 1000,
                        "Energy (kWh)": data["energy_kwh"],
                        "CDD": data["cooling_degree_days"]
                    }
                    for month, data in monthly_breakdown.items() if month != "annual"
                ])
                
                # Add annual total
                annual = monthly_breakdown["annual"]
                monthly_df = monthly_df.append({
                    "Month": "Annual",
                    "Avg. Temp (°C)": annual["avg_temp_c"],
                    "Peak Load (kW)": annual["peak_load_w"] / 1000,
                    "Avg. Load (kW)": annual["average_load_w"] / 1000,
                    "Energy (kWh)": annual["energy_kwh"],
                    "CDD": annual["cooling_degree_days"]
                }, ignore_index=True)
                
                st.dataframe(monthly_df, use_container_width=True)
                
                # Add explanation
                st.info("CDD = Cooling Degree Days (base 18°C)")
            else:
                # Create simple dataframe without energy data
                monthly_df = pd.DataFrame({
                    "Month": months,
                    "Peak Load (W)": peak_loads,
                    "Daily Average (W)": daily_averages
                })
                st.dataframe(monthly_df, use_container_width=True)
    else:
        st.info("Monthly breakdown data not available.")
    
    # Hourly load profile for peak day with interactive chart
    st.subheader("Hourly Load Profile for Peak Day")
    
    if result.monthly_loads and result.peak_hour:
        # Get the month with the peak load
        peak_month = max(result.monthly_loads.keys(), key=lambda m: result.monthly_loads[m]["peak_load"])
        
        # Get hourly loads for the peak month
        if "hourly_loads" in result.monthly_loads[peak_month]:
            hourly_loads = result.monthly_loads[peak_month]["hourly_loads"]
            
            # Create interactive line chart with Plotly
            fig = go.Figure()
            
            fig.add_trace(go.Scatter(
                x=list(range(1, 25)),
                y=hourly_loads,
                name="Cooling Load",
                mode='lines+markers',
                line=dict(color='rgb(26, 118, 255)', width=3),
                marker=dict(size=8)
            ))
            
            # Add peak hour marker
            fig.add_trace(go.Scatter(
                x=[result.peak_hour],
                y=[hourly_loads[result.peak_hour - 1]],
                name="Peak Hour",
                mode='markers',
                marker=dict(color='red', size=12, symbol='star')
            ))
            
            # Add temperature curve if available
            if monthly_breakdown and peak_month in monthly_breakdown:
                # Get average temperature for the month
                avg_temp = monthly_breakdown[peak_month]["avg_temp_c"]
                
                # Create hourly temperature profile (simplified)
                hourly_temps = [
                    avg_temp - 3 + 6 * np.sin(np.pi * (hour - 4) / 12)
                    for hour in range(1, 25)
                ]
                
                fig.add_trace(go.Scatter(
                    x=list(range(1, 25)),
                    y=hourly_temps,
                    name="Temperature (°C)",
                    mode='lines',
                    line=dict(color='rgb(255, 99, 71)', width=2, dash='dot'),
                    yaxis="y2"
                ))
                
                # Update layout with secondary y-axis
                fig.update_layout(
                    yaxis2=dict(
                        title="Temperature (°C)",
                        overlaying="y",
                        side="right",
                        range=[min(hourly_temps) - 2, max(hourly_temps) + 2]
                    )
                )
            
            fig.update_layout(
                title=f"Hourly Cooling Load Profile for {peak_month}",
                xaxis=dict(title="Hour of Day", tickmode='linear', tick0=1, dtick=1),
                yaxis=dict(title="Cooling Load (W)"),
                legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
            )
            
            st.plotly_chart(fig, use_container_width=True)
            
            # Add explanation
            st.info(f"The peak cooling load occurs at {result.peak_hour}:00 in {peak_month} with a value of {hourly_loads[result.peak_hour - 1]:.1f} W.")
        else:
            st.info("Hourly load profile data not available.")
    else:
        st.info("Hourly load profile data not available.")
    
    # Energy efficiency recommendations
    if monthly_breakdown and "annual" in monthly_breakdown:
        st.subheader("Energy Efficiency Recommendations")
        
        annual = monthly_breakdown["annual"]
        annual_energy_per_m2 = annual["energy_kwh"] / building.settings.floor_area if building else 0
        peak_load_per_m2 = annual["peak_load_w"] / building.settings.floor_area if building else 0
        
        # Create recommendations based on the results
        recommendations = []
        
        if annual_energy_per_m2 > 100:
            recommendations.append(f"The annual cooling energy consumption ({annual_energy_per_m2:.1f} kWh/m²) is high. Consider improving building envelope insulation.")
        
        if peak_load_per_m2 > 100:
            recommendations.append(f"The peak cooling load ({peak_load_per_m2:.1f} W/m²) is high. Consider reducing solar heat gain through windows.")
        
        if building and building.settings.indoor_temp < 24:
            recommendations.append(f"The indoor design temperature ({building.settings.indoor_temp} °C) is low. Increasing it to 24-26 °C could reduce cooling energy consumption.")
        
        if building and any(glass.shgc > 0.4 for glass in building.glass):
            recommendations.append("Consider using low-SHGC glazing (SHGC < 0.4) to reduce solar heat gain through windows.")
        
        if building and any(wall.u_value > 0.5 for wall in building.walls):
            recommendations.append("Some walls have high U-values. Consider adding insulation to reduce heat gain through walls.")
        
        if building and building.roof.u_value > 0.3:
            recommendations.append("The roof has a high U-value. Consider adding roof insulation to reduce heat gain.")
        
        # Display recommendations
        if recommendations:
            for i, recommendation in enumerate(recommendations):
                st.write(f"{i+1}. {recommendation}")
        else:
            st.write("No specific recommendations available based on the current data.")
    
    # Additional information
    st.subheader("Additional Information")
    
    # Display calculation timestamp
    st.write(f"Calculation performed on: {result.timestamp.strftime('%Y-%m-%d %H:%M:%S')}")
    
    # Display any notes or warnings
    st.info("Results are based on enhanced ASHRAE cooling load calculation methods with improved accuracy.")
    
    # Export options
    st.subheader("Export Options")
    
    col1, col2, col3 = st.columns(3)
    
    with col1:
        if st.button("Export to CSV"):
            # This would be implemented in the main app
            st.success("Export functionality will be implemented in a future update.")
    
    with col2:
        if st.button("Export to PDF"):
            # This would be implemented in the main app
            st.success("Export functionality will be implemented in a future update.")
    
    with col3:
        if st.button("Export Monthly Report"):
            # This would be implemented in the main app
            st.success("Export functionality will be implemented in a future update.")