File size: 11,088 Bytes
6cc22a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
Weather data module for HVAC Load Calculator.
This module provides access to weather data for cooling load calculations.
"""

from typing import Dict, List, Any, Optional, Tuple
import pandas as pd
import numpy as np
import datetime

class WeatherDataProvider:
    """Class for providing weather data for cooling load calculations."""
    
    def __init__(self):
        """Initialize weather data provider."""
        # Default monthly average temperatures for a temperate climate
        self.default_monthly_temps = {
            "Jan": {"avg_temp": 0.0, "daily_range": 8.0, "relative_humidity": 70.0},
            "Feb": {"avg_temp": 2.0, "daily_range": 9.0, "relative_humidity": 65.0},
            "Mar": {"avg_temp": 7.0, "daily_range": 10.0, "relative_humidity": 60.0},
            "Apr": {"avg_temp": 12.0, "daily_range": 11.0, "relative_humidity": 55.0},
            "May": {"avg_temp": 17.0, "daily_range": 12.0, "relative_humidity": 50.0},
            "Jun": {"avg_temp": 22.0, "daily_range": 13.0, "relative_humidity": 55.0},
            "Jul": {"avg_temp": 25.0, "daily_range": 13.0, "relative_humidity": 60.0},
            "Aug": {"avg_temp": 24.0, "daily_range": 12.0, "relative_humidity": 65.0},
            "Sep": {"avg_temp": 19.0, "daily_range": 11.0, "relative_humidity": 60.0},
            "Oct": {"avg_temp": 13.0, "daily_range": 10.0, "relative_humidity": 65.0},
            "Nov": {"avg_temp": 7.0, "daily_range": 9.0, "relative_humidity": 70.0},
            "Dec": {"avg_temp": 2.0, "daily_range": 8.0, "relative_humidity": 75.0}
        }
        
        # Design conditions for major cities
        self.city_design_conditions = {
            "New York": {
                "latitude": "40N",
                "summer_db": 32.0,  # °C, dry bulb
                "summer_wb": 24.0,  # °C, wet bulb
                "summer_daily_range": 11.0,  # °C
                "winter_db": -10.0,  # °C
                "winter_humidity": 40.0  # %
            },
            "Los Angeles": {
                "latitude": "34N",
                "summer_db": 35.0,
                "summer_wb": 23.0,
                "summer_daily_range": 10.0,
                "winter_db": 5.0,
                "winter_humidity": 50.0
            },
            "Chicago": {
                "latitude": "42N",
                "summer_db": 33.0,
                "summer_wb": 25.0,
                "summer_daily_range": 12.0,
                "winter_db": -18.0,
                "winter_humidity": 35.0
            },
            "Houston": {
                "latitude": "30N",
                "summer_db": 36.0,
                "summer_wb": 26.0,
                "summer_daily_range": 9.0,
                "winter_db": 0.0,
                "winter_humidity": 60.0
            },
            "Phoenix": {
                "latitude": "33N",
                "summer_db": 42.0,
                "summer_wb": 24.0,
                "summer_daily_range": 15.0,
                "winter_db": 2.0,
                "winter_humidity": 30.0
            },
            "Miami": {
                "latitude": "26N",
                "summer_db": 33.0,
                "summer_wb": 27.0,
                "summer_daily_range": 8.0,
                "winter_db": 10.0,
                "winter_humidity": 70.0
            },
            "London": {
                "latitude": "51N",
                "summer_db": 28.0,
                "summer_wb": 20.0,
                "summer_daily_range": 10.0,
                "winter_db": -5.0,
                "winter_humidity": 80.0
            },
            "Tokyo": {
                "latitude": "36N",
                "summer_db": 33.0,
                "summer_wb": 27.0,
                "summer_daily_range": 8.0,
                "winter_db": 0.0,
                "winter_humidity": 60.0
            },
            "Sydney": {
                "latitude": "34S",
                "summer_db": 31.0,
                "summer_wb": 22.0,
                "summer_daily_range": 9.0,
                "winter_db": 8.0,
                "winter_humidity": 65.0
            },
            "Singapore": {
                "latitude": "1N",
                "summer_db": 33.0,
                "summer_wb": 28.0,
                "summer_daily_range": 7.0,
                "winter_db": 23.0,
                "winter_humidity": 85.0
            }
        }
    
    def get_monthly_weather_data(self, city: str = None) -> Dict[str, Dict[str, float]]:
        """
        Get monthly weather data for a city.
        
        Args:
            city: City name (optional)
            
        Returns:
            Dictionary of monthly weather data
        """
        # If city is provided and exists in our database, adjust the monthly data
        if city and city in self.city_design_conditions:
            city_data = self.city_design_conditions[city]
            
            # Create a copy of the default data
            monthly_data = self.default_monthly_temps.copy()
            
            # Adjust the data based on the city's design conditions
            # This is a simplified approach; in a real implementation, you would use more detailed data
            
            # Summer months (Northern Hemisphere: Jun, Jul, Aug; Southern Hemisphere: Dec, Jan, Feb)
            summer_months = ["Jun", "Jul", "Aug"] if "N" in city_data["latitude"] else ["Dec", "Jan", "Feb"]
            winter_months = ["Dec", "Jan", "Feb"] if "N" in city_data["latitude"] else ["Jun", "Jul", "Aug"]
            
            # Adjust summer months
            for month in summer_months:
                monthly_data[month]["avg_temp"] = city_data["summer_db"] - 3.0  # Average is typically lower than design
                monthly_data[month]["daily_range"] = city_data["summer_daily_range"]
                monthly_data[month]["relative_humidity"] = 60.0  # Approximate
            
            # Adjust winter months
            for month in winter_months:
                monthly_data[month]["avg_temp"] = city_data["winter_db"] + 5.0  # Average is typically higher than design
                monthly_data[month]["daily_range"] = city_data["summer_daily_range"] * 0.7  # Winter range is typically smaller
                monthly_data[month]["relative_humidity"] = city_data["winter_humidity"]
            
            # Adjust transition months (simple linear interpolation)
            transition_months = [m for m in monthly_data.keys() if m not in summer_months and m not in winter_months]
            
            # Sort months chronologically
            all_months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
            transition_months.sort(key=lambda m: all_months.index(m))
            
            # Get average summer and winter values
            summer_avg_temp = sum(monthly_data[m]["avg_temp"] for m in summer_months) / len(summer_months)
            winter_avg_temp = sum(monthly_data[m]["avg_temp"] for m in winter_months) / len(winter_months)
            
            # Interpolate for transition months
            num_transition = len(transition_months)
            for i, month in enumerate(transition_months):
                factor = (i + 1) / (num_transition + 1)
                if "N" in city_data["latitude"]:  # Northern Hemisphere
                    if all_months.index(month) < all_months.index("Jun"):  # Spring
                        monthly_data[month]["avg_temp"] = winter_avg_temp + factor * (summer_avg_temp - winter_avg_temp)
                    else:  # Fall
                        monthly_data[month]["avg_temp"] = summer_avg_temp - factor * (summer_avg_temp - winter_avg_temp)
                else:  # Southern Hemisphere
                    if all_months.index(month) < all_months.index("Dec") and all_months.index(month) >= all_months.index("Jun"):  # Winter to Summer
                        monthly_data[month]["avg_temp"] = winter_avg_temp + factor * (summer_avg_temp - winter_avg_temp)
                    else:  # Summer to Winter
                        monthly_data[month]["avg_temp"] = summer_avg_temp - factor * (summer_avg_temp - winter_avg_temp)
            
            return monthly_data
        
        # If no city is provided or city is not in our database, return default data
        return self.default_monthly_temps
    
    def get_design_conditions(self, city: str) -> Dict[str, Any]:
        """
        Get design conditions for a city.
        
        Args:
            city: City name
            
        Returns:
            Dictionary of design conditions
        """
        if city in self.city_design_conditions:
            return self.city_design_conditions[city]
        else:
            # Return default design conditions
            return {
                "latitude": "40N",
                "summer_db": 35.0,
                "summer_wb": 25.0,
                "summer_daily_range": 11.0,
                "winter_db": -10.0,
                "winter_humidity": 50.0
            }
    
    def get_hourly_temperatures(self, base_temp: float, daily_range: float) -> List[float]:
        """
        Calculate hourly temperatures based on daily range.
        
        Args:
            base_temp: Base temperature (daily average)
            daily_range: Daily temperature range
            
        Returns:
            List of hourly temperatures
        """
        from utils.ashrae_integration import get_daily_range_percentage
        
        hourly_temps = []
        for hour in range(1, 25):
            # Get percentage of daily range for this hour
            percentage = get_daily_range_percentage(hour) / 100.0
            
            # Calculate temperature
            temp = base_temp - daily_range / 2.0 + daily_range * percentage
            
            hourly_temps.append(temp)
        
        return hourly_temps
    
    def get_hourly_humidity(self, base_humidity: float, hourly_temps: List[float], base_temp: float) -> List[float]:
        """
        Calculate hourly relative humidity based on temperature variation.
        
        Args:
            base_humidity: Base relative humidity (daily average)
            hourly_temps: Hourly temperatures
            base_temp: Base temperature (daily average)
            
        Returns:
            List of hourly relative humidity values
        """
        hourly_humidity = []
        
        for temp in hourly_temps:
            # This is a simplified approach; in a real implementation, you would use psychrometric formulas
            # Humidity tends to be inversely related to temperature
            temp_diff = temp - base_temp
            humidity_adjustment = -temp_diff * 2.0  # Rough approximation: 2% humidity change per °C
            
            humidity = base_humidity + humidity_adjustment
            humidity = max(10.0, min(100.0, humidity))  # Clamp between 10% and 100%
            
            hourly_humidity.append(humidity)
        
        return hourly_humidity

# Create a singleton instance
weather_data_provider = WeatherDataProvider()